• 2871 Citations
  • 30 h-Index

Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Research Biography

Prof Mitchell is the leading expert on small scale microbial processes with publications in Nature, Science and PNAS. He has given invited talks at the Masschusetts Institute of Technology, at Cambridge University and at the Gordon Research Conference on marine microbiology. He has collaborated with the University of Tokyo, MIT and the University of Chicago. His research group consists of 20+ people, including post doctoral fellows and scientific staff from all over the world. Research in his group focuses on the influences of nanometer to micrometer scale processes on microbial ecosystems. Research outcomes have been used in nanotechnology, including microfluidics and nanofabrication. As part of this research they investigate environmental viruses (>10^8/ml) and metagenomics.

Research Interests

Microbial Fuel Cells
Microbes produce electricity at their cell membrane. This energy can be tapped to produce electricity for human use while simultaneously breaking down waste and toxic organic matter. Our research focuses on how these ecosystems function.

Bacterial Motility

There is little apparent reason for marine bacteria floating in the ocean to be motile. Yet, they are among the most highly motile bacteria known. Research in this lab addresses the generation of high-speed motility, its use, and the energetic and competitive costs of possessing it.

Phytoplankton Dynamics

Research on phytoplankton distributions traditionally occurs over kilometres. However, phytoplankton are much smaller than 1 mm. The basic ecological processes of nutrient competition, reproduction infection spread and grazing occur over distances of millimetres to a metre. Our research describes phytoplankton distributions over millimetres to centimetres and the processes that generate those distributions to understand phytoplankton ecology better.

Microbial Nanopatterning

The cell surfaces of marine microbes are exposed to a variety of salubrious, pathogenic and poisonous particles that range in size from salt ions to bacteria. We are testing the hypothesis that microbial surface topography helps control movement of nearby particles. In ground breaking work, Michelle Hale, has shown that diatom surfaces localise, deflect and sort submicrometre particles. These results help explain why diatoms are a dominant microalgal group in marine and freshwater environments. A spinoff from this work insight into how to control macromolecules in microfluidic flows on silicon chips. Some of this research is carried out in collaboration with Cornell Nanofabrication Facility at Cornell University.

Fingerprint Dive into the research topics where Jim Mitchell is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 3 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

  • 2871 Citations
  • 30 h-Index
  • 102 Article
  • 5 Paper
  • 3 Chapter

Coupling virio- and bacterioplankton populations with environmental variable changes in the Bohai Sea

Wang, C., Wu, L., Wang, Y., Paterson, J. S., Mitchell, J. G. & Hu, X., 1 Jun 2020, In : Acta Oceanologica Sinica. 39, 6, p. 72-83 12 p.

Research output: Contribution to journalArticle

  • Efficacy of lytic phage cocktails on staphylococcus aureus and pseudomonas aeruginosa in mixed-species planktonic cultures and biofilms

    Kifelew, L. G., Warner, M. S., Morales, S., Thomas, N., Gordon, D. L., Mitchell, J. G. & Speck, P. G., 18 May 2020, In : Viruses. 12, 5, 16 p., 559.

    Research output: Contribution to journalArticle

    Open Access
  • The microbial abundance dynamics of the paediatric oral cavity before and after sleep

    Carlson-Jones, J. A. P., Kontos, A., Kennedy, D., Martin, J., Lushington, K., McKerral, J., Paterson, J. S., Smith, R. J., Dann, L. M., Speck, P. & Mitchell, J. G., 30 Mar 2020, In : Journal of Oral Microbiology. 12, 1, 13 p., 1741254.

    Research output: Contribution to journalArticle

  • A hydrocarbon-contaminated aquifer reveals a Piggyback-the-Persistent viral strategy

    Paterson, J. S., Smith, R. J., McKerral, J. C., Dann, L. M., Launer, E., Goonan, P., Kleinig, T., Fuhrman, J. A. & Mitchell, J. G., 1 Aug 2019, In : FEMS microbiology ecology. 95, 8, 10 p., fiz116.

    Research output: Contribution to journalArticle

  • Distinct niche partitioning of marine and freshwater microbes during colonisation

    Dann, L. M., Clanahan, M., Paterson, J. S. & Mitchell, J. G., 1 Aug 2019, In : FEMS microbiology ecology. 95, 8, fiz098.

    Research output: Contribution to journalArticle

  • 1 Citation (Scopus)