TY - GEN
T1 - 3D adaptive coverage planning for confined space inspection robots
AU - Pivetta, Rowan
AU - Lammas, Andrew
AU - Sammut, Karl
PY - 2018
Y1 - 2018
N2 - The manual inspection of confined spaces, such as ballast tanks, for corrosion is a hazardous, time consuming, expensive, and subjective process. Robotic inspection techniques are being considered as they promise greater objectivity and comprehensive coverage as well as repeatability, reduced risk, and shorter maintenance downtime. To enable a robot to comprehensively inspect all surfaces within the tank, it needs an inspection plan. Although coverage planning algorithms can be used to automatically generate optimal plans, complex environments and robot kinematics can make the problem challenging. Most existing coverage algorithms can only produce offline plans, however these cannot cope with unforeseen obstacles and would consequently fail when placed in modified environments. Such problems present the need for adaptive coverage-planning algorithms that can replan routes autonomously. To date, the focus of our research has been to evolve an offline redundant roadmap based algorithm into an enhanced algorithm capable of adapting its plan online. The online solution utilises LIDAR scan updates to rectify compromised paths through region-based replanning, allowing localised replanning around identified areas of change without recalculating the whole tour from scratch. Preliminary results reveal that the online planner is capable of replanning multiple regions concurrently, faster, and with minimal path degradation compared to its offline counterpart.
AB - The manual inspection of confined spaces, such as ballast tanks, for corrosion is a hazardous, time consuming, expensive, and subjective process. Robotic inspection techniques are being considered as they promise greater objectivity and comprehensive coverage as well as repeatability, reduced risk, and shorter maintenance downtime. To enable a robot to comprehensively inspect all surfaces within the tank, it needs an inspection plan. Although coverage planning algorithms can be used to automatically generate optimal plans, complex environments and robot kinematics can make the problem challenging. Most existing coverage algorithms can only produce offline plans, however these cannot cope with unforeseen obstacles and would consequently fail when placed in modified environments. Such problems present the need for adaptive coverage-planning algorithms that can replan routes autonomously. To date, the focus of our research has been to evolve an offline redundant roadmap based algorithm into an enhanced algorithm capable of adapting its plan online. The online solution utilises LIDAR scan updates to rectify compromised paths through region-based replanning, allowing localised replanning around identified areas of change without recalculating the whole tour from scratch. Preliminary results reveal that the online planner is capable of replanning multiple regions concurrently, faster, and with minimal path degradation compared to its offline counterpart.
KW - Adaptive planning
KW - Confined space inspection
KW - Coverage planning
KW - Robotics
UR - http://www.scopus.com/inward/record.url?scp=85087657764&partnerID=8YFLogxK
U2 - 10.3233/978-1-61499-870-9-496
DO - 10.3233/978-1-61499-870-9-496
M3 - Conference contribution
AN - SCOPUS:85087657764
SN - 9781614998693
T3 - Technology and Science for the Ships of the Future - Proceedings of NAV 2018: 19th International Conference on Ship and Maritime Research
SP - 496
EP - 503
BT - Technology and Science for the Ships of the Future - Proceedings of NAV 2018
A2 - Marino, Alberto
A2 - Bucci, Vittorio
PB - IOS Press
CY - Amsterdam
T2 - 19th International Conference on Ship and Maritime Research, NAV 2018
Y2 - 20 June 2018 through 22 June 2018
ER -