TY - JOUR
T1 - A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles
AU - Mousavi-Khattat, Mohammad
AU - Keyhanfar, Mehrnaz
AU - Razmjou, Amir
PY - 2018
Y1 - 2018
N2 - Silver nanoparticles have a wide range of research, industrial and biomedical applications that make it essential to develop a low cost and eco-friendly approach with scaling up potential. Green synthesis of nanoparticles through bio-reactions leads to a reduction of silver ions to particles could be an acceptable selection using no additional reducing chemicals. Moreover, the simplicity of scale-up processes of the method makes it more efficient than chemical and physical synthesis methods. In this study, Datura stramonium leaf extract and sodium citrate were used as biological and chemical reducing and stabilizing agents to make silver nanoparticles. The main goal is to comprise properties and evaluate antibacterial activity of nanoparticles synthesized through two approaches. Size and morphology compared between the two types of the synthesized nanoparticle by UV-Visible spectroscopy, DLS, AFM, TEM and their antibacterial effects were evaluated through growth inhibition MIC and MBC methods. The results showed narrow size range, spherical shape, high anti-oxidant, antibacterial and DNA cleavage activities of green synthesized silver nanoparticles comparing to less average size, wider range of nanoparticle size, no anti-oxidant activity and less antibacterial and DNA cleavage activities of chemically synthesized nanoparticles. The green synthesized silver nanoparticles had more desirable characteristics and biological activities compared to chemically synthesized nanoparticles. For instance, the green nanoparticles showed narrow size range, spherical shape, high anti-oxidant, antibacterial and DNA cleavage activities versus the chemically synthesized which had less average size, higher range of nanoparticles size, no anti-oxidant activity and less antibacterial and DNA cleavage activities.
AB - Silver nanoparticles have a wide range of research, industrial and biomedical applications that make it essential to develop a low cost and eco-friendly approach with scaling up potential. Green synthesis of nanoparticles through bio-reactions leads to a reduction of silver ions to particles could be an acceptable selection using no additional reducing chemicals. Moreover, the simplicity of scale-up processes of the method makes it more efficient than chemical and physical synthesis methods. In this study, Datura stramonium leaf extract and sodium citrate were used as biological and chemical reducing and stabilizing agents to make silver nanoparticles. The main goal is to comprise properties and evaluate antibacterial activity of nanoparticles synthesized through two approaches. Size and morphology compared between the two types of the synthesized nanoparticle by UV-Visible spectroscopy, DLS, AFM, TEM and their antibacterial effects were evaluated through growth inhibition MIC and MBC methods. The results showed narrow size range, spherical shape, high anti-oxidant, antibacterial and DNA cleavage activities of green synthesized silver nanoparticles comparing to less average size, wider range of nanoparticle size, no anti-oxidant activity and less antibacterial and DNA cleavage activities of chemically synthesized nanoparticles. The green synthesized silver nanoparticles had more desirable characteristics and biological activities compared to chemically synthesized nanoparticles. For instance, the green nanoparticles showed narrow size range, spherical shape, high anti-oxidant, antibacterial and DNA cleavage activities versus the chemically synthesized which had less average size, higher range of nanoparticles size, no anti-oxidant activity and less antibacterial and DNA cleavage activities.
KW - antibacterial
KW - chemical synthesis
KW - Datura stramonium
KW - green synthesis
KW - Silver nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=85057261694&partnerID=8YFLogxK
U2 - 10.1080/21691401.2018.1527346
DO - 10.1080/21691401.2018.1527346
M3 - Article
C2 - 30449178
AN - SCOPUS:85057261694
SN - 2169-1401
VL - 46
SP - S1022-S1031
JO - Artificial Cells, Nanomedicine and Biotechnology
JF - Artificial Cells, Nanomedicine and Biotechnology
IS - sup3
ER -