A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area

Farzin Shabani, Lalit Kumar, Mohsen Ahmadi

Research output: Contribution to journalArticlepeer-review

68 Citations (Scopus)
1 Downloads (Pure)

Abstract

To investigate the comparative abilities of six different bioclimatic models in an independent area, utilizing the distribution of eight different species available at a global scale and in Australia. Global scale and Australia. We tested a variety of bioclimatic models for eight different plant species employing five discriminatory correlative species distribution models (SDMs) including Generalized Linear Model (GLM), MaxEnt, Random Forest (RF), Boosted Regression Tree (BRT), Bioclim, together with CLIMEX (CL) as a mechanistic niche model. These models were fitted using a training dataset of available global data, but with the exclusion of Australian locations. The capabilities of these techniques in projecting suitable climate, based on independent records for these species in Australia, were compared. Thus, Australia is not used to calibrate the models and therefore it is as an independent area regarding geographic locations. To assess and compare performance, we utilized the area under the receiver operating characteristic (ROC) curves (AUC), true skill statistic (TSS), and fractional predicted areas for all SDMs. In addition, we assessed satisfactory agreements between the outputs of the six different bioclimatic models, for all eight species in Australia. The modeling method impacted on potential distribution predictions under current climate. However, the utilization of sensitivity and the fractional predicted areas showed that GLM, MaxEnt, Bioclim, and CL had the highest sensitivity for Australian climate conditions. Bioclim calculated the highest fractional predicted area of an independent area, while RF and BRT were poor. For many applications, it is difficult to decide which bioclimatic model to use. This research shows that variable results are obtained using different SDMs in an independent area. This research also shows that the SDMs produce different results for different species; for example, Bioclim may not be good for one species but works better for other species. Also, when projecting a “large” number of species into novel environments or in an independent area, the selection of the “best” model/technique is often less reliable than an ensemble modeling approach. In addition, it is vital to understand the accuracy of SDMs' predictions. Further, while TSS, together with fractional predicted areas, are appropriate tools for the measurement of accuracy between model results, particularly when undertaking projections on an independent area, AUC has been proved not to be. Our study highlights that each one of these models (CL, Bioclim, GLM, MaxEnt, BRT, and RF) provides slightly different results on projections and that it may be safer to use an ensemble of models.

Original languageEnglish
Pages (from-to)5973-5986
Number of pages14
JournalEcology and Evolution
Volume6
Issue number16
DOIs
Publication statusPublished - 1 Aug 2016
Externally publishedYes

Bibliographical note

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Keywords

  • Bioclimatic model
  • correlative model
  • fundamental niche
  • mechanistic niche model
  • modeling methods
  • realized niche
  • species distribution model

Fingerprint Dive into the research topics of 'A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area'. Together they form a unique fingerprint.

Cite this