A new image classification approach for mapping coral density in State of Kuwait using high spatial resolution satellite images

M. Gholoum, D. Bruce, S. Alhazeem

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Remote sensing technology can be a valuable tool for mapping coral reef ecosystems. However, the resolution capabilities of remote sensors, the diversity and complexity of coral reef ecosystems, and the low reflectivity of marine environments increase the difficulties in identifying and classifying their features. This research study explores the capability of high spatial resolution (WorldView-2 (WV-2) and Pleiades-1B) and low spatial resolution (Land Remote-Sensing Satellite (Landsat 8)) multispectral (MS) satellite sensors in quantitatively mapping coral density. The Kubbar coral reef ecosystem, located in Kuwait’s southern waters, was selected as the research site. The MS imagery of WV-2, Pleiades-1B and Landsat 8 were, after geometric and radiometric assessment and corrections, subjected to new image classification approach using a Multiple Linear Regression (MLR) analysis. The new approach of MLR coral density analysis used the dependent variable of coral density percentage from ground truth and independent variables of spectral reflectance from selected imagery, depth (as estimated from a surface derived from bathymetric charts) and distance to land or reef unit centre. Accuracy assessment using independent ground truth was performed for the selected approach and satellite sensors to determine the quality of the information derived from image classification processes. The results showed that coral density maps developed using the MLR coral density model proved to have some level of reliability (radiometrically corrected WV-2 image (the coefficient determination denoted as R-squared (R²) = 0.5, Root-Mean-Square Error (RMSE) = 10) and radiometrically corrected Pleiades-1B image (R² = 0.8, RMSE = 10)). This study suggested using high spectral resolution data and including additional factors (variables) (e.g. water turbidity, temperature and salinity) could contribute to improving the accuracy of coral density maps produced by application of the MLR model; however, all of these would add cost and effort to the mapping process. The outcomes of this research study provide coral reef ecosystem researchers, managers, and decision makers a tool to determine and map coral reef density in more detail than in the past. It will help quantify coral density at particular points in time leading to estimates of change, and allow coral reef ecologists to identify the current coral reef habitat health status, distribution and extent.

Original languageEnglish
Pages (from-to)4787-4816
Number of pages30
JournalInternational Journal of Remote Sensing
Volume40
Issue number12
DOIs
Publication statusPublished - 18 Jun 2019
Externally publishedYes

Keywords

  • image classification
  • mapping
  • coral density
  • high spatial resolution
  • satellite images

Fingerprint Dive into the research topics of 'A new image classification approach for mapping coral density in State of Kuwait using high spatial resolution satellite images'. Together they form a unique fingerprint.

  • Cite this