TY - JOUR
T1 - A novel cell-based assay for inhibitory anti-muscarinic type 3 receptor antibodies in primary Sjögren's syndrome
AU - Bastian, Isabell
AU - Gordon, Thomas
AU - Jackson, Michael
PY - 2015/12/1
Y1 - 2015/12/1
N2 - Inhibitory autoantibodies acting at the muscarinic acetylcholine receptor type 3 (M3R) are postulated to mediate autonomic dysfunction, including decreased salivary and lacrimal gland output and extra-glandular manifestations, in patients with primary Sjögren's syndrome. However, the contention that anti-M3R antibodies are pathogenic in patients remains untested, due to a lack of assays both sophisticated enough to detect inhibitory anti-M3R antibodies yet suitable for screening large patient cohorts. In the current study, we have established a cell-based bioassay of M3R activity, based on dual transfection of the M3R and a luciferase reporter gene. The bioassay is capable of capturing real-time agonist-mediated signalling of the M3R, which is inhibited specifically by patient IgG that have previously been demonstrated to have anti-M3R activity. The assay can be run in multi-well culture plates, and analysed using simple luminescence readers. As such, the new bioassay incorporating M3R-mediated luciferase transduction is the first assay adaptable to common diagnostic platforms that is capable of determining the presence in patient serum of functionally active anti-M3R autoantibodies. The new bioassay should prove useful for large cohort screening studies aiming to correlate the presence in patients of inhibitory anti-M3R antibodies with symptoms of both glandular and extra-glandular autonomic dysfunction.
AB - Inhibitory autoantibodies acting at the muscarinic acetylcholine receptor type 3 (M3R) are postulated to mediate autonomic dysfunction, including decreased salivary and lacrimal gland output and extra-glandular manifestations, in patients with primary Sjögren's syndrome. However, the contention that anti-M3R antibodies are pathogenic in patients remains untested, due to a lack of assays both sophisticated enough to detect inhibitory anti-M3R antibodies yet suitable for screening large patient cohorts. In the current study, we have established a cell-based bioassay of M3R activity, based on dual transfection of the M3R and a luciferase reporter gene. The bioassay is capable of capturing real-time agonist-mediated signalling of the M3R, which is inhibited specifically by patient IgG that have previously been demonstrated to have anti-M3R activity. The assay can be run in multi-well culture plates, and analysed using simple luminescence readers. As such, the new bioassay incorporating M3R-mediated luciferase transduction is the first assay adaptable to common diagnostic platforms that is capable of determining the presence in patient serum of functionally active anti-M3R autoantibodies. The new bioassay should prove useful for large cohort screening studies aiming to correlate the presence in patients of inhibitory anti-M3R antibodies with symptoms of both glandular and extra-glandular autonomic dysfunction.
KW - Anti-M3R antibodies
KW - Autoantibodies
KW - Functional antibodies
KW - Muscarinic receptors
KW - Sjögren's syndrome
UR - http://www.scopus.com/inward/record.url?scp=84952639054&partnerID=8YFLogxK
U2 - 10.1016/j.jim.2015.11.005
DO - 10.1016/j.jim.2015.11.005
M3 - Article
SN - 0022-1759
VL - 427
SP - 117
EP - 121
JO - Journal of Immunological Methods
JF - Journal of Immunological Methods
ER -