Abstract
Reaction of the dinucleating ligand 2,7-bis(6-methyl-2-pyridyl)-1,8-naphthyridine (MeL) with the MnI and MnII precursors MnBr(CO)5 and MnCl2 resulted in the formation of the monometallic complexes [MnBr(CO)3(MeL)] (1) and [MnCl2(MeL)] (3). In both cases, formation of bimetallic manganese complexes could be achieved by reduction with KC8, yielding the carbonyl-bridged complex [Mn2(CO)6(MeL)] (2) and the helicate complex [Mn2(MeL)2] (4), respectively. EPR results demonstrate that 4 represents a novel, weakly antiferromagnetically coupled homovalent dimer (J = −0.85 cm−1). The two formally Mn0 ions are both high spin (S = 3/2) and exhibit a zero-field splitting of ≈1 cm−1, suggesting reduction of the complex is substantially ligand centered, and may be better described as a MnII complex coupled to two open shell singlet ligands [MnII2(MeL2−)2]. X-ray crystallography, UV-Vis spectroscopy and DFT analysis support this finding.
Original language | English |
---|---|
Pages (from-to) | 1284-1294 |
Number of pages | 11 |
Journal | Dalton Transactions |
Volume | 53 |
Issue number | 3 |
Early online date | 13 Dec 2023 |
DOIs | |
Publication status | Published - 21 Jan 2024 |
Keywords
- bimetallic transition metal complexes
- manganese 1,8-naphthyridine
- bimetallic manganese complexes