TY - JOUR
T1 - A prognostic model for use before elective surgery to estimate the risk of postoperative pulmonary complications (GSU-Pulmonary Score)
T2 - a development and validation study in three international cohorts
AU - NIHR Global Health Research Unit on Global Surgery
AU - STARSurg Collaborative
AU - Bravo, Laura
AU - Simões, Joana F. F.
AU - Cardoso, Victor R.
AU - Adisa, Adewale
AU - Aguilera, Maria L. A.
AU - Arnaud , Alexis
AU - Biccard, Bruce
AU - Calvache, Jose
AU - Chernbumroong, Saisakul
AU - Elhadi, Muhammed
AU - Ghosh, Dhruv
AU - Gujjuri, Rohan
AU - Harrison, Ewen
AU - Ho, Michael W. S.
AU - Kasivisvanathan, Veerappan
AU - Kouli, Omar
AU - Lederhuber, Hans
AU - Li, Elizabeth
AU - Löffler, Markus W.
AU - Isik, Arda
AU - Marcus, Hani
AU - Martin, Janet
AU - Mclean, Kenneth A
AU - Minaya-Bravo, Ana
AU - Modolo , Maria Marta
AU - Nepogodiev, Dmitri
AU - Pellino, Gianluca
AU - Picciochi, Maria
AU - Pockney, Peter
AU - van Ramshorst, Gabrielle
AU - Riad , Aya
AU - Sayyed, Raza
AU - Sund, Malin
AU - Gkoutos, Georgios
AU - Bhangu, Aneel
AU - Glasbey, James C.
AU - Kadir, B.
AU - Omar, O.
AU - Revell, E.
AU - Bahrami-Hessari, M.
AU - Ahmed, Waheed-Ul-Rahman
AU - Argus, Leah
AU - Ball, Alasdair
AU - Bywater, Edward P.
AU - Blanco-Colino, Ruth
AU - Brar, Amanpreet
AU - Chaudhry, Daoud
AU - Dawson, Brett E.
AU - Duran, Irani
AU - Jones, Conor S.
AU - Kamarajah, Sivesh K.
AU - Keatley, James M.
AU - Lawday, Samuel
AU - Mann, Harvinder
AU - Marson, Ella J.
AU - Marson, Ella J.
AU - Nepogodiev, Dmitri
AU - Norman , Lisa
AU - Ots, Riinu
AU - Outani , Oumaima
AU - Picciochi, Maria
AU - Santos, Irène
AU - Shaw , Catherine
AU - Taylor, Elliott H.
AU - Trout, Isobel M.
AU - Varghese, Chris
AU - Venn, Mary L.
AU - Xu, William
AU - Dajti, Irida
AU - Gjata, Arben
AU - Kacimi, Salah Eddine Oussama
AU - Boccalatte, Luis
AU - Modolo , Maria Marta
AU - Cox, Daniel
AU - Townend, Philip
AU - Aigner, Felix
AU - Kronberger , Irmgard Elisabeth
AU - Samadov, Elgun
AU - Alderazi, Amer
AU - Hossain, Kamral
AU - Padmore, Greg
AU - Lawani, Ismaïl
AU - Cerovac, Anis
AU - Delibegovic, Samir
AU - Baiocchi, Glauco
AU - Ataíde Gomes, Gustavo Mendonça
AU - Lima Buarque, Igor
AU - Gohar, Muhammad
AU - Slavchev, Mihail
AU - Nwegbu, Chukwuemeka
AU - Agarwal, Arnav
AU - Ng-Kamstra, Joshua
AU - Olivos, Maricarmen
AU - Lou, Wenhui
AU - Ren, Dong-Lin
AU - Calvache, Jose Andres
AU - J- Perez Rivera, Carlos
AU - Danic Hadzibegovic, Ana
AU - Kopjar, Tomislav
AU - Mihanovic, Jakov
AU - Avilés Jiménez, Pablo Mijahil
AU - Gouvas, Nikolaos
AU - Klat, Jaroslav
AU - Novysedlák, René
AU - Amisi, Nicolas
AU - Christensen, Peter
AU - El-Hussuna, Alaa
AU - Batista, Sylvia
AU - Lincango-Naranjo, Eddy
AU - Emile, Sameh
AU - Arévalo Sandoval, Danilo Alfonso
AU - Dhufera, Hailu
AU - Hailu, Samuel
AU - Mengesha , Mengistu G.
AU - Kauppila, Joonas H.
AU - Arnaud, Alexis P.
AU - Demetrashvili, Zaza
AU - Albertsmeier, Markus
AU - Acquah, Daniel Kwesi
AU - Ofori, Bernard
AU - Tabiri, Stephen
AU - Metallidis, Symeon
AU - Tsoulfas, Georgios
AU - Aguilera-Arevalo, Maria-Lorena
AU - Recinos, Gustavo
AU - Mersich, Tamás
AU - Wettstein, Dániel
AU - Kembuan, Gabriele
AU - Brouki Milan, Peiman
AU - Khosravi, Mohammad Hossein
AU - Mozafari, Masoud
AU - Hilmi, Ahmed
AU - Mohan, Helen
AU - Zmora, Oded
AU - Gallo, Gaetano
AU - Pata, Francesco
AU - Fujimoto, Yuki
AU - Kuroda, Naoto
AU - Satoi , Sohei
AU - Abou Chaar, Mohamad K.
AU - Ayasra, Faris
AU - Fakhradiyev, Ildar
AU - Said Hamdun, Intisar Hisham
AU - Jin-Young, Jang
AU - Jamal, Mohammad
AU - Karout, Lina
AU - Gulla, Aiste
AU - Rasoaherinomenjanahary, Fanjandrainy
AU - Samison, Luc Hervé
AU - Roslani , April Camilla
AU - Durán Sánchez, Iran Irani
AU - Gonzalez, Diana Samantha
AU - Martinez, Laura
AU - Martínez, María José
AU - Nayen, Alejandra
AU - Ramos-De la Medina, Antonio
AU - Nunez, Jade
AU - Nashidengo, Pueya Rashid
AU - Shah, Rakesh
AU - Lal Shrestha, Ashish
AU - Jonker, Pascal
AU - Kruijff, Schelto
AU - Noltes, Milou
AU - Steinkamp, Pieter
AU - Wright, Deborah
AU - Abdur-Rahman, Lukman
AU - Ademuyiwa, Adesoji
AU - Osinaike, Babatunde
AU - Seyi-Olajide, Justina
AU - Williams, Omolara
AU - Williams, Emmanuel
AU - Pejkova, Sofija
AU - Al Balushi, Zainab
AU - Qureshi, Ahmad Uzair
AU - Abo Mohsen, Mustafa
AU - Cukier, Moises
AU - Gomez-Fernandez, Hugo
AU - Shu Yip, Sebastian
AU - Vasquez Ojeda, Ximena Paola
AU - Sacdalan, Marie Dione
AU - Major, Piotr
AU - Azevedo, José
AU - Cunha, Miguel F.
AU - Zarour, Ahmad
AU - Bonci, Eduard-Alexandru
AU - Negoi, Ionut
AU - Efetov, Sergey
AU - Kochetkov, Viktor
AU - Litvin, Andrey
AU - Ingabire, Jc Allen
AU - Bucyibaruta, Georges
AU - Faustin, Ntirenganya
AU - Habumuremyi, Sosthene
AU - Imanishimwe, Alphonsine
AU - Jean de Dieu, Haragirimana
AU - Munyaneza, Emmanuel
AU - Ncogoza, Isaie
AU - AlAmeer , Ehab
AU - Ndong, Abdourahmane
AU - Radenkovic, Dejan
AU - Chew, Min Hoe
AU - Koh, Frederick
AU - Ngu, James
AU - Panyko, Arpád
AU - Bele, Uros
AU - Košir, Jurij Aleš
AU - Daoud, Hassan
AU - Jayarajah, Umesh
AU - Wickramasinghe, Dakshitha
AU - Essa Adam, Mohammed Elmujtba Adam
AU - Rutegård, Martin
AU - Adamina, Michel
AU - Gialamas, Eleftherios
AU - Horisberger, Karoline
AU - Alshaar, Muhammad
AU - Huang, Abel
AU - Lohsiriwat, Varut
AU - Charles, Shane
AU - Jlassi, Haithem
AU - Leventoğlu, Sezai
AU - Lekuya, Hervé Monka
AU - Lule , Herman
AU - Kopetskyi, Slava
AU - Alsaadi, Hayder
AU - Alshryda, Sattar
AU - Alser, Osaid
AU - Bankhead-Kendall, Brittany
AU - Breen, Kerry
AU - Kaafarani, Haytham
AU - Mashbari, Hassan
AU - Bonilla Cal, Fernando
AU - Al-Naggar, Hamza
AU - Maimbo, Mayaba
AU - Mazingi, Dennis
AU - Abbott, Tom
AU - Akhbari, Melika
AU - Benson, Ruth
AU - Bhanderi, Shivam
AU - Caruana, Edward
AU - Chakrabortee, Sohini
AU - Chapatwala, Reema
AU - Costas-Chavarri, Ainhoa
AU - Demetriades, Andreas K.
AU - Desai, Anant
AU - Di Saverio, Salomone
AU - Drake, Thomas
AU - Edwards, John
AU - Evans, John
AU - Fiore, Marco
AU - Ford, Samuel
AU - Fotopoulou, Christina
AU - Fowler, Alexander
AU - Futaba, Kaori
AU - Ganly, Ian
AU - James, Grace
AU - Griffiths, Ewen
AU - Gronchi, Alessandro
AU - Hutchinson, Peter
AU - Hyman, Gabriella Yael
AU - Incorvia, Joseph
AU - Jain, Ritu
AU - Jenkinson, Michael
AU - Khan, Tabassum
AU - Knight, Stephen Richard
AU - Kolias, Angelos
AU - Kudsk-Iversen, Søren
AU - Kwan, Tsun Yu
AU - Leung, Elaine
AU - Mayol, Julio
AU - McKay, Siobhan
AU - Meara, John G.
AU - Mills, Emily
AU - Moug, Susan
AU - Patel, Akshay
AU - Perinotti, Roberto
AU - Rice, Henry E.
AU - Roberts, Keith
AU - Schache, Andrew
AU - Shaw, Richard
AU - Smart, Neil
AU - Stephens, Matthew
AU - Stewart, Grant D.
AU - Teasdale, Ella
AU - Vaughan-Shaw, Peter
AU - Vidya, Raghavan
AU - Wright, Naomi
AU - Wuraola , Funmilola
AU - Zimmelman, Natalie
AU - Agastra, Ervis
AU - Thereska, Dariel
AU - Lucchini, Sergio Martin
AU - Laudani, Veronica
AU - Chwat, Carina
AU - Salazar, Pedraza
AU - Pantoja Pachajoa, Diana Alejandra
AU - Duro, Agustin
AU - D’Aulerio, Giuliana
AU - Dudi-Venkata, Nagrenda
AU - Egoroff, Natasha
AU - Farik, Shebani
AU - Lott, Natalie
AU - Moss, Jana Lee
AU - Rennie, Sarah
AU - Tan , Lorwai
AU - Vo, Uyen Giao
AU - Watson, David
PY - 2024/7
Y1 - 2024/7
N2 - Background: Pulmonary complications are the most common cause of death after surgery. This study aimed to derive and externally validate a novel prognostic model that can be used before elective surgery to estimate the risk of postoperative pulmonary complications and to support resource allocation and prioritisation during pandemic recovery.Methods: Data from an international, prospective cohort study were used to develop a novel prognostic risk model for pulmonary complications after elective surgery in adult patients (aged ≥18 years) across all operation and disease types. The primary outcome measure was postoperative pulmonary complications at 30 days after surgery, which was a composite of pneumonia, acute respiratory distress syndrome, and unexpected mechanical ventilation. Model development with candidate predictor variables was done in the GlobalSurg-CovidSurg Week dataset (global; October, 2020). Two structured machine learning techniques were explored (XGBoost and the least absolute shrinkage and selection operator [LASSO]), and the model with the best performance (GSU-Pulmonary Score) underwent internal validation using bootstrap resampling. The discrimination and calibration of the score were externally validated in two further prospective cohorts: CovidSurg-Cancer (worldwide; February to August, 2020, during the COVID-19 pandemic) and RECON (UK and Australasia; January to October, 2019, before the COVID-19 pandemic). The model was deployed as an online web application. The GlobalSurg-CovidSurg Week and CovidSurg-Cancer studies were registered with ClinicalTrials.gov, NCT04509986 and NCT04384926.Findings: Prognostic models were developed from 13 candidate predictor variables in data from 86 231 patients (1158 hospitals in 114 countries). External validation included 30 492 patients from CovidSurg-Cancer (726 hospitals in 75 countries) and 6789 from RECON (150 hospitals in three countries). The overall rates of pulmonary complications were 2·0% in derivation data, and 3·9% (CovidSurg-Cancer) and 4·7% (RECON) in the validation datasets. Penalised regression using LASSO had similar discrimination to XGBoost (area under the receiver operating curve [AUROC] 0·786, 95% CI 0·774–0·798 vs 0·785, 0·772–0·797), was more explainable, and required fewer covariables. The final GSU-Pulmonary Score included ten predictor variables and showed good discrimination and calibration upon internal validation (AUROC 0·773, 95% CI 0·751–0·795; Brier score 0·020, calibration in the large [CITL] 0·034, slope 0·954). The model performance was acceptable on external validation in CovidSurg-Cancer (AUROC 0·746, 95% CI 0·733–0·760; Brier score 0·036, CITL 0·109, slope 1·056), but with some miscalibration in RECON data (AUROC 0·716, 95% CI 0·689–0·744; Brier score 0·045, CITL 1·040, slope 1·009).Interpretation: This novel prognostic risk score uses simple predictor variables available at the time of a decision for elective surgery that can accurately stratify patients’ risk of postoperative pulmonary complications, including during SARS-CoV-2 outbreaks. It could inform surgical consent, resource allocation, and hospital-level prioritisation as elective surgery is upscaled to address global backlogs. Funding: National Institute for Health Research.
AB - Background: Pulmonary complications are the most common cause of death after surgery. This study aimed to derive and externally validate a novel prognostic model that can be used before elective surgery to estimate the risk of postoperative pulmonary complications and to support resource allocation and prioritisation during pandemic recovery.Methods: Data from an international, prospective cohort study were used to develop a novel prognostic risk model for pulmonary complications after elective surgery in adult patients (aged ≥18 years) across all operation and disease types. The primary outcome measure was postoperative pulmonary complications at 30 days after surgery, which was a composite of pneumonia, acute respiratory distress syndrome, and unexpected mechanical ventilation. Model development with candidate predictor variables was done in the GlobalSurg-CovidSurg Week dataset (global; October, 2020). Two structured machine learning techniques were explored (XGBoost and the least absolute shrinkage and selection operator [LASSO]), and the model with the best performance (GSU-Pulmonary Score) underwent internal validation using bootstrap resampling. The discrimination and calibration of the score were externally validated in two further prospective cohorts: CovidSurg-Cancer (worldwide; February to August, 2020, during the COVID-19 pandemic) and RECON (UK and Australasia; January to October, 2019, before the COVID-19 pandemic). The model was deployed as an online web application. The GlobalSurg-CovidSurg Week and CovidSurg-Cancer studies were registered with ClinicalTrials.gov, NCT04509986 and NCT04384926.Findings: Prognostic models were developed from 13 candidate predictor variables in data from 86 231 patients (1158 hospitals in 114 countries). External validation included 30 492 patients from CovidSurg-Cancer (726 hospitals in 75 countries) and 6789 from RECON (150 hospitals in three countries). The overall rates of pulmonary complications were 2·0% in derivation data, and 3·9% (CovidSurg-Cancer) and 4·7% (RECON) in the validation datasets. Penalised regression using LASSO had similar discrimination to XGBoost (area under the receiver operating curve [AUROC] 0·786, 95% CI 0·774–0·798 vs 0·785, 0·772–0·797), was more explainable, and required fewer covariables. The final GSU-Pulmonary Score included ten predictor variables and showed good discrimination and calibration upon internal validation (AUROC 0·773, 95% CI 0·751–0·795; Brier score 0·020, calibration in the large [CITL] 0·034, slope 0·954). The model performance was acceptable on external validation in CovidSurg-Cancer (AUROC 0·746, 95% CI 0·733–0·760; Brier score 0·036, CITL 0·109, slope 1·056), but with some miscalibration in RECON data (AUROC 0·716, 95% CI 0·689–0·744; Brier score 0·045, CITL 1·040, slope 1·009).Interpretation: This novel prognostic risk score uses simple predictor variables available at the time of a decision for elective surgery that can accurately stratify patients’ risk of postoperative pulmonary complications, including during SARS-CoV-2 outbreaks. It could inform surgical consent, resource allocation, and hospital-level prioritisation as elective surgery is upscaled to address global backlogs. Funding: National Institute for Health Research.
KW - prognostic model
KW - elective surgery
KW - postoperative pulmonary complications
UR - http://www.scopus.com/inward/record.url?scp=85196614725&partnerID=8YFLogxK
U2 - 10.1016/S2589-7500(24)00065-7
DO - 10.1016/S2589-7500(24)00065-7
M3 - Article
C2 - 38906616
AN - SCOPUS:85196614725
SN - 2589-7500
VL - 6
SP - e507-e519
JO - The Lancet Digital Health
JF - The Lancet Digital Health
IS - 7
ER -