TY - JOUR
T1 - A short exploration of structural noise
AU - Doherty, John
AU - Welter, David
PY - 2010/5
Y1 - 2010/5
N2 - "Structural noise" is a term often used to describe model-to-measurement misfit that cannot be ascribed to measurement noise and therefore must be ascribed to the imperfect nature of a numerical model as a simulator of reality. As such, it is often the dominant contributor to model-to-measurement misfit. As the name "structural noise" implies, this type of misfit is often treated as an additive term to measurement noise when assessing model parameter and predictive uncertainty. This paper inquires into the nature of defect-induced model-to-measurement misfit and provides a conceptual basis for accommodating it. It is shown that inasmuch as defect induced model-to-measurement misfit can be characterized as "noise," this noise is likely to show a high degree of spatial and temporal correlation; furthermore, its covariance matrix may approach singularity. However, the deleterious impact of structural noise on the model calibration process may be mitigated in a variety of ways. These include adoption of a highly parameterized approach to model construction and calibration (including the strategic use of compensatory parameters where appropriate), processing of observations and their model generated counterparts in ways that are able to filter out structural noise prior to fitting one to the other, and/or through implementation of a weighting strategy that gives prominence to observations that most resemble predictions required of a model.
AB - "Structural noise" is a term often used to describe model-to-measurement misfit that cannot be ascribed to measurement noise and therefore must be ascribed to the imperfect nature of a numerical model as a simulator of reality. As such, it is often the dominant contributor to model-to-measurement misfit. As the name "structural noise" implies, this type of misfit is often treated as an additive term to measurement noise when assessing model parameter and predictive uncertainty. This paper inquires into the nature of defect-induced model-to-measurement misfit and provides a conceptual basis for accommodating it. It is shown that inasmuch as defect induced model-to-measurement misfit can be characterized as "noise," this noise is likely to show a high degree of spatial and temporal correlation; furthermore, its covariance matrix may approach singularity. However, the deleterious impact of structural noise on the model calibration process may be mitigated in a variety of ways. These include adoption of a highly parameterized approach to model construction and calibration (including the strategic use of compensatory parameters where appropriate), processing of observations and their model generated counterparts in ways that are able to filter out structural noise prior to fitting one to the other, and/or through implementation of a weighting strategy that gives prominence to observations that most resemble predictions required of a model.
UR - http://www.scopus.com/inward/record.url?scp=77952859980&partnerID=8YFLogxK
U2 - 10.1029/2009WR008377
DO - 10.1029/2009WR008377
M3 - Article
SN - 0043-1397
VL - 46
JO - Water Resources Research
JF - Water Resources Research
IS - 5
M1 - W05525
ER -