A stable moving-particle semi-implicit method for free surface flows

B. Ataie-Ashtiani, Leila Farhadi

Research output: Contribution to journalArticlepeer-review

116 Citations (Scopus)


In this paper, a mesh-less numerical approach is utilized to solve Euler's equation that is the governing equation of the irrotational flow of ideal fluids. A fractional step method of discritization is applied which consists to split each time step in two steps. This numerical method is based on moving-particle semi-implicit method (MPS) for simulating incompressible inviscid flows with free surfaces. The motion of each particle is calculated through interactions with neighboring particles covered with the kernel function. There are limitations for getting a stable solution by MPS method. In this paper, various kernel functions are considered and applied to improve the stability of MPS method. Based on these studies a kernel function is introduced that improves the stability of MPS method. The numerical results of the model are in good agreement with experimental results. The applicability of this model to simulate hydraulic problems with free surface is shown through the solution of dam break problem. The present method is a very useful utility for solving problems with irregular free surface in hydraulic and coastal engineering when an accurate prediction of free water surface is required.

Original languageEnglish
Pages (from-to)241-256
Number of pages16
JournalFluid Dynamics Research
Issue number4
Publication statusPublished - 30 Apr 2006
Externally publishedYes


  • Free surface flow
  • Lagrangian approach
  • Moving-particle semi-implicit method
  • Numerical method


Dive into the research topics of 'A stable moving-particle semi-implicit method for free surface flows'. Together they form a unique fingerprint.

Cite this