Adsorption and Conformation Behavior of Biotinylated Fibronectin on Streptavidin-Modified TiOX Surfaces Studied by SPR and AFM

Michael Lehnert, Miriam Gorbahn, Christopher Rosin, Marcus Klein, Ingo Koper, Bilal Al-Nawas, Wolfgang Knoll, Michael Veith

    Research output: Contribution to journalArticlepeer-review

    33 Citations (Scopus)

    Abstract

    It is well-known that protein-modified implant surfaces such as TiO 2 show a higher bioconductivity. Fibronectin is a glycoprotein from the extracellular matrix (ECM) with a major role in cell adhesion. It can be applied on titanium oxide surfaces to accelerate implant integration. Not only the surface concentration but also the presentation of the protein plays an important role for the cellular response. We were able to show that TiO X surfaces modified with biotinylated fibronectin adsorbed on a streptavidin-silane self-assembly multilayer system are more effective regarding osteoblast adhesion than surfaces modified with nonspecifically bound fibronectin. The adsorption and conformation behavior of biotinylated and nonbiotinylated (native) fibronectin was studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy (AFM). Imaging of the protein modification revealed that fibronectin adopts different conformations on nonmodified compared to streptavidin-modified TiOX surfaces. This conformational change of biotinylated fibronectin on the streptavidin monolayer delivers a fibronectin structure similar to the conformation inside the ECM and therefore explains the higher cell affinity for these surfaces.

    Original languageEnglish
    Pages (from-to)7743-7751
    Number of pages9
    JournalLangmuir
    Volume27
    Issue number12
    DOIs
    Publication statusPublished - 21 Jun 2011

    Fingerprint

    Dive into the research topics of 'Adsorption and Conformation Behavior of Biotinylated Fibronectin on Streptavidin-Modified TiOX Surfaces Studied by SPR and AFM'. Together they form a unique fingerprint.

    Cite this