Abstract
The accurate prediction of reference points on the axial stress–axial strain relationship of fiber-reinforced polymer (FRP)-confined concrete is vital to pre-design structures made with this system. This study uses an artificial neural network (ANN) for predicting hoop rupture strain (εh,rup) and transition zone, namely transition strain (εc1) and stress (f’c1), on axial stress–strain curves of FRP-confined concrete. These are key parameters for estimating a transition zone of stress–strain curves. In this study, accompanied with these parameters, ultimate condition parameters, including compressive strength and ultimate axial strain, were predicted using a comprehensive database. Various combinations of input data and ANN parameters were used to increase the accuracy of the predictions. A sensitivity analysis and a model validation assessment were performed to evaluate the predictability of the developed models. At the end, a comparison between the proposed models in this study and existing ANN and design-oriented models was presented. It is shown that the accuracy of the developed ANN models in this study is higher or comparable to that of existing ANN models. Additionally, the developed models in this study to predict f’c1 and εc1 exhibit a higher accuracy compared to existing design-oriented models. These results indicate that the proposed ANN models capture the lateral confinement effect on ultimate and transition zones of FRP-confined concrete with a more robust performance compared to existing models.
Original language | English |
---|---|
Article number | 3038 |
Number of pages | 25 |
Journal | Applied Sciences (Switzerland) |
Volume | 13 |
Issue number | 5 |
Early online date | 27 Feb 2023 |
DOIs | |
Publication status | Published - 1 Mar 2023 |
Keywords
- artificial neural network (ANN)
- compressive strength
- FRP-confined concrete
- hoop rupture strain
- transition zone
- ultimate axial strain