An experimental investigation on crack effect on the mechanical behavior and energy absorption of thin-walled tubes

A. Alavi Nia, H. Badnava, Khosro Fallahnezhad

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Energy absorption capacity and collapse of cylindrical and square thin-walled aluminum tubes with a crack shaped trigger under axial compression are studied in this paper. Furthermore, the effects of length, angle, location and situation of cracks on the mechanical behavior of tubes are investigated. The results of this research show that the cracks change the collapse processes and folding modes; this effects are greater for the cylindrical tubes; the maximum load is reduced between 4.92% and 31.33% for cylindrical and between 2.55% and 18.52% for square tubes; the cracks increase the crush force efficiency up to 67.03% and 31.06%, and absorbed energy up to 30.45% and 30.16% for cylindrical and square tubes, respectively. The maximum load for all of the cracked tubes is less than that of intact tubes and increasing the crack angle from 0° to 45° decreases the maximum load and from 45° to 60° increases it. Finally, parallel cracks are more effective than perpendicular cracks.

Original languageEnglish
Pages (from-to)3594-3607
Number of pages14
JournalMaterials and Design
Volume32
Issue number6
DOIs
Publication statusPublished - Jun 2011
Externally publishedYes

Fingerprint Dive into the research topics of 'An experimental investigation on crack effect on the mechanical behavior and energy absorption of thin-walled tubes'. Together they form a unique fingerprint.

  • Cite this