An off-lattice discrete model to characterise filamentous yeast colony morphology

Kai Li, Edward J.F. Green, Hayden Tronnolone, Alexander K.Y. Tam, Andrew J. Black, Jennifer M. Gardner, Joanna F. Sundstrom, Vladimir Jiranek, Benjamin J. Binder

Research output: Contribution to journalArticlepeer-review

11 Downloads (Pure)

Abstract

We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.

Original languageEnglish
Article numbere1012605
Number of pages20
JournalPLOS Computational Biology
Volume20
Issue number11
DOIs
Publication statusPublished - Nov 2024

Keywords

  • cellular behaviour
  • colony-scale patterns
  • filamentous yeast colonies
  • morphology

Fingerprint

Dive into the research topics of 'An off-lattice discrete model to characterise filamentous yeast colony morphology'. Together they form a unique fingerprint.

Cite this