Antenatal depression and its potential causal mechanisms among pregnant mothers in Gondar town: application of structural equation model

Abel Fekadu Dadi, Emma Miller, Richard Woodman, Telake Azale Bisetegn, Lillian Mwanri

Research output: Contribution to journalArticlepeer-review

2 Downloads (Pure)

Abstract

Background
Various forms of life stressors have been implicated as causes of antenatal depression. However, there is a lack of understanding of which forms of stress lead to antenatal depression and through what mechanisms. Modeling stress processes within a theoretical model framework can enhance an understanding of the mechanisms underlying relationships between stressors and stress outcomes. This study used the stress process model framework to explore the causal mechanisms underlying antenatal depression in Gondar, Ethiopia.
Methods
Questionnaires, using an Online Data collection Kit (ODK) tool were administered face-to-face in 916 pregnant women in their second and third trimesters. Pregnant women were included from six randomly selected urban districts in Gondar, Ethiopia during June and August 2018. The Edinburgh Postnatal Depression Scale (EPDS) was used to screen for antenatal depression. A Structural Equation Model (SEM) was employed to explore the direct, indirect, and total effect of stressors and mediators of antenatal depression.

Result
Sixty-three participants (6.9%) reported symptoms of depression. Of these, 16 (4.7%) and 47 (8.1%) were in their second and third trimesters, respectively. The SEM demonstrated several direct effects on antenatal depression scores including unplanned pregnancy (standardized β = 0.15), having a history of common mental health disorder (standardized β = 0.18) and fear of giving birth to the current pregnancy (standardized β = 0.29), all of which were associated with a higher depression score. Adequate food access for the last 3 months (standardized β = − 0.11) was associated with decreased depression score. Social support (β = − 0.21), marital agreement (β = − 0.28), and partner support (β = −.18) appeared to partially mediate the link between the identified stressors and the risk of antenatal depression.

Conclusion
Both direct and indirect effects contributed to higher antenatal depression score in Ethiopian women. The three psychosocial resources namely marital agreement, social and partner support, mediated reduced antenatal depression scores. Early screening of antenatal depression and enhancing the three psychosocial resources would help to improve maternal resilience.
Original languageEnglish
Article number168
Number of pages15
JournalBMC Pregnancy and Childbirth
Volume20
Issue number1
Early online date17 Mar 2020
DOIs
Publication statusPublished - 17 Mar 2020

Bibliographical note

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Keywords

  • Antenatal depression
  • Pregnant mothers
  • Stressor
  • Structural equation modeling

Fingerprint Dive into the research topics of 'Antenatal depression and its potential causal mechanisms among pregnant mothers in Gondar town: application of structural equation model'. Together they form a unique fingerprint.

Cite this