TY - JOUR
T1 - Assessing the use of harvested greenhouse runoff for managed aquifer recharge to improve groundwater status in South Portugal
AU - da Costa, Luis Ricardo Dias
AU - Monteiro, José Paulo Patrício Geraldes
AU - Hugman, Rui Twohig
PY - 2020
Y1 - 2020
N2 - Concentration of nitrates in groundwater at the Nitrate Vulnerable zone of Faro, south Portugal, reaches values as high as 300 mg/l; therefore, according to the EU Water Framework Directive, mitigation measures need to be implemented. A Managed Aquifer Recharge scheme is proposed to accelerate the dilution and natural discharge of nitrates from the system. Source water availability is estimated from rainfall intercepted at existing greenhouses. Within the highest nitrate concentration area, estimated water availability for injection in existing wells is 1.50 hm3/year, a significant volume which represents approximately 15% of the aquifer direct recharge. It is proposed this is recharged to the aquifer through existing large-diameter traditional wells that are no longer used for abstraction. Injection test results suggest that the likely infiltration capacity of such wells is more than sufficient to allow collection of 95% of daily rainfall events. The effect of injecting this volume in the aquifer was estimated with the support of a 3D numerical groundwater flow and transport model. Results show considerable improvement in nitrate concentrations in the study area, in certain locations decreasing up to 70 mg/l by 2027. The model results predict a decrease in the number of nitrate threshold exceedances in observation points, from 33 to 30 by 2027 and 14 to 9 by 2040. It is likely that this measure may have a positive effect on other issues identified in the area, mostly related with quantity problems and seawater intrusion. Notwithstanding, issues including landowner support, clogging, conditions of greenhouses and wells, water quality, and climate change impacts will require further consideration to develop a successful and beneficial MAR scheme.
AB - Concentration of nitrates in groundwater at the Nitrate Vulnerable zone of Faro, south Portugal, reaches values as high as 300 mg/l; therefore, according to the EU Water Framework Directive, mitigation measures need to be implemented. A Managed Aquifer Recharge scheme is proposed to accelerate the dilution and natural discharge of nitrates from the system. Source water availability is estimated from rainfall intercepted at existing greenhouses. Within the highest nitrate concentration area, estimated water availability for injection in existing wells is 1.50 hm3/year, a significant volume which represents approximately 15% of the aquifer direct recharge. It is proposed this is recharged to the aquifer through existing large-diameter traditional wells that are no longer used for abstraction. Injection test results suggest that the likely infiltration capacity of such wells is more than sufficient to allow collection of 95% of daily rainfall events. The effect of injecting this volume in the aquifer was estimated with the support of a 3D numerical groundwater flow and transport model. Results show considerable improvement in nitrate concentrations in the study area, in certain locations decreasing up to 70 mg/l by 2027. The model results predict a decrease in the number of nitrate threshold exceedances in observation points, from 33 to 30 by 2027 and 14 to 9 by 2040. It is likely that this measure may have a positive effect on other issues identified in the area, mostly related with quantity problems and seawater intrusion. Notwithstanding, issues including landowner support, clogging, conditions of greenhouses and wells, water quality, and climate change impacts will require further consideration to develop a successful and beneficial MAR scheme.
KW - Groundwater contamination
KW - Managed aquifer recharge
KW - Nitrate vulnerable zone
KW - Numerical modeling
KW - Recharge wells
KW - Water sensitive design
UR - http://www.scopus.com/inward/record.url?scp=85085270048&partnerID=8YFLogxK
U2 - 10.1007/s12665-020-09003-5
DO - 10.1007/s12665-020-09003-5
M3 - Article
AN - SCOPUS:85085270048
SN - 1866-6280
VL - 79
JO - Environmental Earth Sciences
JF - Environmental Earth Sciences
IS - 11
M1 - 253
ER -