TY - JOUR
T1 - Associations between systemic melatonin and human myopia
T2 - A systematic review
AU - Hussain, Azfira
AU - Gopalakrishnan, Aparna
AU - Scott, Hannah
AU - Seby, Chris
AU - Tang, Victoria
AU - Ostrin, Lisa
AU - Chakraborty, Ranjay
PY - 2023/11
Y1 - 2023/11
N2 - Purpose: Experimental models have implicated the role of melatonin circadian rhythm disruption in refractive error development. Recent studies have examined melatonin concentration and its diurnal patterns on refractive error with equivocal results. This systematic review aimed to summarise the literature on melatonin circadian rhythms in myopia. Recent Findings: PubMed, EMBASE, Web of Science, Scopus, ProQuest Central, LILACS, Cochrane and Medline databases were searched for papers between January 2010 and December 2022 using defined search terms. Seven studies measured melatonin and circadian rhythms in three biological fluids (blood serum, saliva and urine) in both myopes and non-myopes. Morning melatonin concentrations derived from blood serum varied significantly between studies in individuals aged 10–30 years, with a maximum of 89.45 pg/mL and a minimum of 5.43 pg/mL using liquid chromatography and mass spectrometry. The diurnal variation of salivary melatonin was not significantly different between myopes and emmetropes when measured every 4 h for 24 h and quantified with enzyme-linked immunosorbent assay. Significantly elevated salivary melatonin concentrations were reported in myopes compared with emmetropes, aged 18–30 years when measured hourly from evening until their habitual bedtime using liquid chromatography. However, the relationship between dim light melatonin onset and refractive group was inconsistent between studies. The 6-sulphatoxymelatonin concentration derived from overnight urine volume, measured using a double antibody radioimmunoassay, was found to be significantly lower in myopes (29.17 pg/mL) than emmetropes (42.51 pg/mL). Summary: The role of melatonin concentration and rhythm in myopia has not been studied extensively. This systematic review confirms conflicting findings across studies, with potential relationships existing. Future studies with uniform methodological approaches are required to ascertain the causal relationship between melatonin dysregulation and myopia in humans.
AB - Purpose: Experimental models have implicated the role of melatonin circadian rhythm disruption in refractive error development. Recent studies have examined melatonin concentration and its diurnal patterns on refractive error with equivocal results. This systematic review aimed to summarise the literature on melatonin circadian rhythms in myopia. Recent Findings: PubMed, EMBASE, Web of Science, Scopus, ProQuest Central, LILACS, Cochrane and Medline databases were searched for papers between January 2010 and December 2022 using defined search terms. Seven studies measured melatonin and circadian rhythms in three biological fluids (blood serum, saliva and urine) in both myopes and non-myopes. Morning melatonin concentrations derived from blood serum varied significantly between studies in individuals aged 10–30 years, with a maximum of 89.45 pg/mL and a minimum of 5.43 pg/mL using liquid chromatography and mass spectrometry. The diurnal variation of salivary melatonin was not significantly different between myopes and emmetropes when measured every 4 h for 24 h and quantified with enzyme-linked immunosorbent assay. Significantly elevated salivary melatonin concentrations were reported in myopes compared with emmetropes, aged 18–30 years when measured hourly from evening until their habitual bedtime using liquid chromatography. However, the relationship between dim light melatonin onset and refractive group was inconsistent between studies. The 6-sulphatoxymelatonin concentration derived from overnight urine volume, measured using a double antibody radioimmunoassay, was found to be significantly lower in myopes (29.17 pg/mL) than emmetropes (42.51 pg/mL). Summary: The role of melatonin concentration and rhythm in myopia has not been studied extensively. This systematic review confirms conflicting findings across studies, with potential relationships existing. Future studies with uniform methodological approaches are required to ascertain the causal relationship between melatonin dysregulation and myopia in humans.
KW - circadian rhythm
KW - dim light onset melatonin
KW - melatonin
KW - myopia
KW - ocular diurnal rhythm
KW - refractive error
UR - http://www.scopus.com/inward/record.url?scp=85167664428&partnerID=8YFLogxK
U2 - 10.1111/opo.13214
DO - 10.1111/opo.13214
M3 - Review article
AN - SCOPUS:85167664428
SN - 0275-5408
VL - 43
SP - 1478
EP - 1490
JO - Ophthalmic and Physiological Optics
JF - Ophthalmic and Physiological Optics
IS - 6
ER -