TY - JOUR
T1 - Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica
AU - Herraiz-Borreguero, L.
AU - Church, J. A.
AU - Allison, I.
AU - Pena-Molino, B.
AU - Coleman, R.
AU - Tomczak, M.
AU - Craven, M.
PY - 2016/7/1
Y1 - 2016/7/1
N2 - Despite the Amery Ice Shelf (AIS) being the third largest ice shelf in Antarctica, the seasonal variability of the physical processes involved in the AIS-ocean interaction remains undocumented and a robust observational, oceanographic-based basal melt rate estimate has been lacking. Here we use year-long time series of water column temperature, salinity, and horizontal velocities measured along the ice shelf front from 2001 to 2002. Our results show strong zonal variations in the distribution of water masses along the ice shelf front: modified Circumpolar Deep Water (mCDW) arrives in the east, while in the west, Ice Shelf Water (ISW) and Dense Shelf Water (DSW) formed in the Mackenzie polynya dominate the water column. Baroclinic eddies, formed during winter deep convection (down to 1100 m), drive the inflow of DSW into the ice shelf cavity. Our net basal melt rate estimate is 57.4 ± 25.3 Gt yr−1 (1 ± 0.4 m yr−1), larger than previous modeling-based and glaciological-based estimates, and results from the inflow of DSW (0.52 ± 0.38 Sv; 1 Sv = 106 m3 s−1) and mCDW (0.22 ± 0.06 Sv) into the cavity. Our results highlight the role of the Mackenzie polynya in the seasonal exchange of water masses across the ice shelf front, and the role of the ISW in controlling the formation rate and thermohaline properties of DSW. These two processes directly impact on the ice shelf mass balance, and on the contribution of DSW/ISW to the formation of Antarctic Bottom Water.
AB - Despite the Amery Ice Shelf (AIS) being the third largest ice shelf in Antarctica, the seasonal variability of the physical processes involved in the AIS-ocean interaction remains undocumented and a robust observational, oceanographic-based basal melt rate estimate has been lacking. Here we use year-long time series of water column temperature, salinity, and horizontal velocities measured along the ice shelf front from 2001 to 2002. Our results show strong zonal variations in the distribution of water masses along the ice shelf front: modified Circumpolar Deep Water (mCDW) arrives in the east, while in the west, Ice Shelf Water (ISW) and Dense Shelf Water (DSW) formed in the Mackenzie polynya dominate the water column. Baroclinic eddies, formed during winter deep convection (down to 1100 m), drive the inflow of DSW into the ice shelf cavity. Our net basal melt rate estimate is 57.4 ± 25.3 Gt yr−1 (1 ± 0.4 m yr−1), larger than previous modeling-based and glaciological-based estimates, and results from the inflow of DSW (0.52 ± 0.38 Sv; 1 Sv = 106 m3 s−1) and mCDW (0.22 ± 0.06 Sv) into the cavity. Our results highlight the role of the Mackenzie polynya in the seasonal exchange of water masses across the ice shelf front, and the role of the ISW in controlling the formation rate and thermohaline properties of DSW. These two processes directly impact on the ice shelf mass balance, and on the contribution of DSW/ISW to the formation of Antarctic Bottom Water.
KW - Amery Ice Shelf
KW - basal melt
KW - deep convection
KW - DSW
KW - mCDW
KW - polynya
UR - http://www.scopus.com/inward/record.url?scp=84978435077&partnerID=8YFLogxK
U2 - 10.1002/2016JC011858
DO - 10.1002/2016JC011858
M3 - Article
SN - 2169-9291
VL - 121
SP - 4946
EP - 4965
JO - Journal of Geophysical Research: Oceans
JF - Journal of Geophysical Research: Oceans
IS - 7
ER -