Benchmark characterisation and automated detection of wind farm noise amplitude modulation

Phuc D. Nguyen, Kristy L. Hansen, Bastien Lechat, Peter Catcheside, Branko Zajamsek, Colin H. Hansen

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Amplitude modulation (AM) is a characteristic feature of wind farm noise and has the potential to contribute to annoyance and sleep disturbance. Detection, quantification and characterisation of AM is relevant for regulatory bodies that seek to reduce adverse impacts of wind farm noise and for researchers and wind farm developers that aim to understand and account for this phenomenon. We here present an approach to detect and characterise AM in a comprehensive and long-term wind farm noise data set using human scoring. We established benchmark AM characteristics, which are important for validation and calibration of results obtained using automated methods. We further proposed an advanced AM detection method, which has a predictive power close to the practical limit set by human scoring. Human-based approaches should be considered as benchmark methods for characterising and detecting unique noise features.

Original languageEnglish
Article number108286
Number of pages13
JournalAPPLIED ACOUSTICS
Volume183
DOIs
Publication statusPublished - 1 Dec 2021

Keywords

  • Amplitude modulation
  • Automated detection
  • Benchmark characterisation
  • Wind farm noise

Cite this