Blockade of Aquaporin 1 Inhibits Proliferation, Motility, and Metastatic Potential of Mesothelioma In Vitro but not in an In Vivo Model

Sonja Klebe, Kim Griggs, Yuen Cheng, Jack Driml, Douglas Henderson, Glen Reid

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Background. Malignant mesothelioma (MM) is an aggressive tumor of the serosal membranes, mostly the pleura. It is related to asbestos exposure and has a poor prognosis. MM has a long latency period, and incidence is predicted to remain stable or increase until 2020. Currently, no biomarkers for a specific targeted therapy are available. Previously, we observed that expression of aquaporin 1 (AQP1) was an indicator of prognosis in two independent cohorts. Here we determine whether AQP1 inhibition has therapeutic potential in the treatment of MM. Methods. Functional studies were performed with H226 cells and primary MM cells harvested from pleural effusions. AQP1 expression and mesothelial phenotype was determined by immunohistochemistry. AQP1 function was inhibited by a pharmacological blocker (AqB050) or AQP1-specific siRNA. Cell proliferation, migration, and anchorage-independent cell growth were assessed. A nude mouse heterotopic xenograft model of MM was utilised for the in vivo studies. Results. Inhibition of AQP1 significantly decreases cell proliferation, metastatic potential, and motility without inducing nonspecific cytotoxicity or increasing apoptosis. In vivo blockade of AQP1 had no biologically significant effect on growth of established tumours. Conclusions. Targeted blockade of AQP1 restricts MM growth and migration in vitro. Further work is warranted to fully evaluate treatment potential in vivo.

Original languageEnglish
Article number286719
Number of pages10
JournalDISEASE MARKERS
Volume2015
DOIs
Publication statusPublished - 2015

Fingerprint Dive into the research topics of 'Blockade of Aquaporin 1 Inhibits Proliferation, Motility, and Metastatic Potential of Mesothelioma In Vitro but not in an In Vivo Model'. Together they form a unique fingerprint.

Cite this