TY - JOUR
T1 - Caffeine metabolism by human hepatic cytochromes p450
T2 - Contributions of 1A2, 2E1 and 3A isoforms
AU - Tassaneeyakul, Wichittra
AU - Birkett, Donald J.
AU - McManus, Michael E.
AU - Tassaneeyakul, Wongwiwat
AU - Veronese, Maurice E.
AU - Andersson, Tommy
AU - Tukey, Robert H.
AU - Miners, John O.
PY - 1994/5/18
Y1 - 1994/5/18
N2 - Caffeine (CA) N1-, N3- and N7-demethylase, CA 8-hydroxylase and phenacetin O-deethylase activities were measured in microsomes from 18 separate human livers which had been characterized previously for a range of cytochrome P450 (CYP) isoform-specific activities and immunoreactive CYP protein contents. Correlations between the high affinity components of the three separate CA N-demethylations were highly significant (r = 0.77-0.91, P < 0.001) and each of the three high affinity CA N-demethylations correlated significantly (r = 0.64-0.93, P < 0.05-0.001) with the high affinity phenacetin O-deethylase, 2-acetylaminofluorene N-hydroxylation and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) mutagenicity (all predominantly CYP1A2-mediated reactions). Consistent with these observations, cDNA-expressed human CYP1A2 catalyzed the N1-, N3- and N7-demethylation of CA and apparent Km values were similar (0.24-0.28 mM) for all three reactions and comparable to those observed previously with human liver microsomes. The low affinity components of CA N1- and N7-demethylation correlated significantly (r = 0.55-0.85, P < 0.05-0.001) with immunoreactive CYP2E1 content and the CYP2E1-specific activities 4-nitrophenol and chlorzoxazone hydroxylation. Diethyldithiocarbamate, a selective inhibitor of CYP2E1, inhibited the low affinity CA N1- and N7-demethylation, with IC50 values of 23 μM and 11 μM, respectively. The apparent Km values for CA N1- and N7-demethylation by cDNA-expressed CYP2E1 (namely 28 and 43 mM, respectively) were of a similar order to those calculated for the low affinity microsomal activities. Significant correlations (r = 0.87-0.97, P < 0.001) were observed between CA 8-hydroxylation and immunoreactive CYP3A content and the CYP3A-mediated reactions benzo(a)pyrene hydroxylation, omeprazole sulfoxidation and aflatoxin B1 mutagenesis. Effects of α-naphthoflavone, erythromycin, troleandomycin and nifedipine on microsomal CA 8-hydroxylation were generally consistent with CYP3A involvement. Taken together with previous data, the results indicate a major involvement of CYP1A2 in the high affinity component of all three human hepatic CA N-demethylations. In contrast, CYP2E1 appears to be the main enzyme involved in the low affinity components of CA N1- and N7-demethylation while CA 8-hydroxylation is catalysed predominantly by a CYP3A isoform(s).
AB - Caffeine (CA) N1-, N3- and N7-demethylase, CA 8-hydroxylase and phenacetin O-deethylase activities were measured in microsomes from 18 separate human livers which had been characterized previously for a range of cytochrome P450 (CYP) isoform-specific activities and immunoreactive CYP protein contents. Correlations between the high affinity components of the three separate CA N-demethylations were highly significant (r = 0.77-0.91, P < 0.001) and each of the three high affinity CA N-demethylations correlated significantly (r = 0.64-0.93, P < 0.05-0.001) with the high affinity phenacetin O-deethylase, 2-acetylaminofluorene N-hydroxylation and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) mutagenicity (all predominantly CYP1A2-mediated reactions). Consistent with these observations, cDNA-expressed human CYP1A2 catalyzed the N1-, N3- and N7-demethylation of CA and apparent Km values were similar (0.24-0.28 mM) for all three reactions and comparable to those observed previously with human liver microsomes. The low affinity components of CA N1- and N7-demethylation correlated significantly (r = 0.55-0.85, P < 0.05-0.001) with immunoreactive CYP2E1 content and the CYP2E1-specific activities 4-nitrophenol and chlorzoxazone hydroxylation. Diethyldithiocarbamate, a selective inhibitor of CYP2E1, inhibited the low affinity CA N1- and N7-demethylation, with IC50 values of 23 μM and 11 μM, respectively. The apparent Km values for CA N1- and N7-demethylation by cDNA-expressed CYP2E1 (namely 28 and 43 mM, respectively) were of a similar order to those calculated for the low affinity microsomal activities. Significant correlations (r = 0.87-0.97, P < 0.001) were observed between CA 8-hydroxylation and immunoreactive CYP3A content and the CYP3A-mediated reactions benzo(a)pyrene hydroxylation, omeprazole sulfoxidation and aflatoxin B1 mutagenesis. Effects of α-naphthoflavone, erythromycin, troleandomycin and nifedipine on microsomal CA 8-hydroxylation were generally consistent with CYP3A involvement. Taken together with previous data, the results indicate a major involvement of CYP1A2 in the high affinity component of all three human hepatic CA N-demethylations. In contrast, CYP2E1 appears to be the main enzyme involved in the low affinity components of CA N1- and N7-demethylation while CA 8-hydroxylation is catalysed predominantly by a CYP3A isoform(s).
KW - caffeine
KW - cytochrome P450
KW - drug metabolism
KW - human liver
KW - substrate probe
UR - http://www.scopus.com/inward/record.url?scp=0028241592&partnerID=8YFLogxK
U2 - 10.1016/0006-2952(94)90304-2
DO - 10.1016/0006-2952(94)90304-2
M3 - Article
C2 - 8204093
AN - SCOPUS:0028241592
SN - 0006-2952
VL - 47
SP - 1767
EP - 1776
JO - Biochemical Pharmacology
JF - Biochemical Pharmacology
IS - 10
ER -