TY - JOUR
T1 - Carboxylate pentapyridines
T2 - Pathway to surface modification and tuneable catalytic proton reduction
AU - Melvin, Marissa K.
AU - Eggers, Paul K.
AU - Raston, Colin L.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - The ability to synthetically tune catalytic performance is a key advantage in the use of molecular catalysts. A series of cobalt pentapyridine carboxylate esters [Co(Py5Me2COOMe)(CH3CN)]2+ (Co-Me), [Co(Py5Me2COOn-Pr)(CH3CN)]2+ (Co-Pr) and [Co(Py5Me2COOPh)(CH3CN)]2+ (Co-Ph) were successfully synthesised and characterised through HD-MS, FT-IR and cyclic voltammetry. Electrochemical studies reveal the complexes are active for electrocatalytic proton reduction in acetonitrile with acetic acid as the proton source. At an acid concentration of 2 mM, the required overpotential for proton reduction was calculated to be 465 mV for Co-Me, 485 mV for Co-Pr and 360 mV for Co-Ph. The rate constant is calculated to be 9.41 s−1, 4.09 s−1 and 7.25 s−1 for complexes Co-Me, Co-Pr and Co-Ph respectively. The cobalt carboxylate complex [Co(Py5Me2COO−)(OH−)]1+ (Co-COOH) was used to prepare chemically modified electrodes from fluorine doped tin oxide (FTO) coated glass and glassy carbon with a calculated surface coverage of 6.38 × 10−11 mol/cm2 and of 6.18 × 10−11 mol/cm2 respectively. The successful reduction of catalytic overpotential through esterification offers an alternative pathway for the design of molecular catalysts.
AB - The ability to synthetically tune catalytic performance is a key advantage in the use of molecular catalysts. A series of cobalt pentapyridine carboxylate esters [Co(Py5Me2COOMe)(CH3CN)]2+ (Co-Me), [Co(Py5Me2COOn-Pr)(CH3CN)]2+ (Co-Pr) and [Co(Py5Me2COOPh)(CH3CN)]2+ (Co-Ph) were successfully synthesised and characterised through HD-MS, FT-IR and cyclic voltammetry. Electrochemical studies reveal the complexes are active for electrocatalytic proton reduction in acetonitrile with acetic acid as the proton source. At an acid concentration of 2 mM, the required overpotential for proton reduction was calculated to be 465 mV for Co-Me, 485 mV for Co-Pr and 360 mV for Co-Ph. The rate constant is calculated to be 9.41 s−1, 4.09 s−1 and 7.25 s−1 for complexes Co-Me, Co-Pr and Co-Ph respectively. The cobalt carboxylate complex [Co(Py5Me2COO−)(OH−)]1+ (Co-COOH) was used to prepare chemically modified electrodes from fluorine doped tin oxide (FTO) coated glass and glassy carbon with a calculated surface coverage of 6.38 × 10−11 mol/cm2 and of 6.18 × 10−11 mol/cm2 respectively. The successful reduction of catalytic overpotential through esterification offers an alternative pathway for the design of molecular catalysts.
KW - Carboxylate ester
KW - Electrocatalyst
KW - Polypyridyl
KW - Proton reduction
UR - http://www.scopus.com/inward/record.url?scp=85140641248&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/ARC/DP1092810
U2 - 10.1016/j.poly.2022.116177
DO - 10.1016/j.poly.2022.116177
M3 - Article
AN - SCOPUS:85140641248
VL - 228
JO - POLYHEDRON
JF - POLYHEDRON
SN - 0277-5387
M1 - 116177
ER -