TY - JOUR
T1 - Cell Microarrays for the Screening of Factors That Allow the Enrichment of Bovine Testicular Cells
AU - Anglin, Emily
AU - Davey, Rhonda
AU - Herrid, Muren
AU - Hope, Shelly
AU - Kurkuri, Mahaveer
AU - Pasic, Paul
AU - Hor, Maryam
AU - Fenech, Michael
AU - Thissen, Helmut
AU - Voelcker, Nicolas
PY - 2010/9
Y1 - 2010/9
N2 - Cell microarrays can serve as high-throughput platforms for the screening of a diverse range of biologically active factors and biomaterials that can induce desired cellular responses such as attachment, proliferation, or differentiation. Here, we demonstrate that surface-engineered microarrays can be used for the screening and identification of factors that allow the enrichment and isolation of rare cells from tissue-derived heterogeneous cell populations. In particular, we have focused on the enrichment of bovine testicular cells including type A spermatogonia and Sertoli cells. Microarray slides were coated with a copolymer synthesized from poly(ethylene glycol) methacrylate and glycidyl methacrylate to enable both the prevention of cell attachment between printed spots and the covalent anchoring of various factors such as antibodies, lectins, growth factors, extracellular matrix proteins, and synthetic macromolecules on printed spots. Microarrays were incubated with mixed cell populations from freshly isolated bovine testicular tissue. Overall, cell attachment was evaluated using CellTracker™ staining, whereas differential attachment of testicular cells was determined by immunohistochemistry staining with Plzf and vimentin antibodies as markers for type A spermatogonia and Sertoli cells, respectively. The results indicate that various surface immobilized factors, but in particular Dolichos biflorus lectin, allowed the enrichment of Plzf positive cells. Furthermore, Pisum sativum lectin, concanavalin A, collagen type IV, and vitronectin were identified as suitable negative selection factors. To our best knowledge, this work is the first to demonstrate the utility of surface engineered cell-based microarrays for the identification of factors that allow the selective capture of rare cells from tissue isolated heterogeneous mixtures.
AB - Cell microarrays can serve as high-throughput platforms for the screening of a diverse range of biologically active factors and biomaterials that can induce desired cellular responses such as attachment, proliferation, or differentiation. Here, we demonstrate that surface-engineered microarrays can be used for the screening and identification of factors that allow the enrichment and isolation of rare cells from tissue-derived heterogeneous cell populations. In particular, we have focused on the enrichment of bovine testicular cells including type A spermatogonia and Sertoli cells. Microarray slides were coated with a copolymer synthesized from poly(ethylene glycol) methacrylate and glycidyl methacrylate to enable both the prevention of cell attachment between printed spots and the covalent anchoring of various factors such as antibodies, lectins, growth factors, extracellular matrix proteins, and synthetic macromolecules on printed spots. Microarrays were incubated with mixed cell populations from freshly isolated bovine testicular tissue. Overall, cell attachment was evaluated using CellTracker™ staining, whereas differential attachment of testicular cells was determined by immunohistochemistry staining with Plzf and vimentin antibodies as markers for type A spermatogonia and Sertoli cells, respectively. The results indicate that various surface immobilized factors, but in particular Dolichos biflorus lectin, allowed the enrichment of Plzf positive cells. Furthermore, Pisum sativum lectin, concanavalin A, collagen type IV, and vitronectin were identified as suitable negative selection factors. To our best knowledge, this work is the first to demonstrate the utility of surface engineered cell-based microarrays for the identification of factors that allow the selective capture of rare cells from tissue isolated heterogeneous mixtures.
KW - Cell isolation
KW - Cell microarrays
KW - Cell surface markers
KW - Germ cells
KW - Sertoli cells
UR - http://www.scopus.com/inward/record.url?scp=77956484564&partnerID=8YFLogxK
U2 - 10.1002/cyto.a.20913
DO - 10.1002/cyto.a.20913
M3 - Article
SN - 1552-4922
VL - 77A
SP - 881
EP - 889
JO - Cytometry Part A
JF - Cytometry Part A
IS - 9
ER -