Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10 wt% and 20 wt% silica nanoparticles in matrix resins

Youhong Tang, Lin Ye, Donghai Zhang, Shiqiang Deng

Research output: Contribution to journalArticlepeer-review

76 Citations (Scopus)

Abstract

The transverse tensile properties, interlaminar shear strength (ILSS) and mode I and mode II interlaminar fracture toughness of carbon fibre/epoxy (CF/EP) laminates with 10 wt% and 20 wt% silica nanoparticles in matrix were investigated, and the influences of silica nanoparticle on those properties of CF/EP laminates were characterized. The transverse tensile properties and mode I interlaminar fracture toughness (GIC) increased with an increase in nanosilica concentration in the matrix resins. However, ILSS and the mode II interlaminar fracture toughness (GIIC) decreased with increasing nanosilica concentration, especially for the higher nanosilica concentration (20 wt%). The reduced GIIC value is attributed to two main competing mechanisms; one is the formation of zipper-like pattern associated with matrix microcracks aligned 45° ahead of the crack tip, while the other is the shear failure of matrix. The ratio of GIIC/GIC decreased with the concentration of silica nanoparticles, comparable with similar CF/EP laminates with dispersed CNTs in matrix. Fractographic studies showed that interfacial failure between carbon fibre and epoxy resin occurred in the neat epoxy laminate, whereas a combination of interfacial failure and matrix failure occurred in the nanosilica-modified epoxy laminates, especially those with a higher nanosilica concentration (20 wt%).

Original languageEnglish
Pages (from-to)1943-1950
Number of pages8
JournalComposites Part A: Applied Science and Manufacturing
Volume42
Issue number12
DOIs
Publication statusPublished - Dec 2011
Externally publishedYes

Keywords

  • A. Carbon fibre
  • A. Laminates
  • B. Fracture toughness
  • D. Fractography

Fingerprint

Dive into the research topics of 'Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10 wt% and 20 wt% silica nanoparticles in matrix resins'. Together they form a unique fingerprint.

Cite this