TY - JOUR
T1 - Chiral self-assembly of designed amphiphiles
T2 - Influences on aggregate morphology
AU - Barclay, Thomas
AU - Constantopoulos, Kristina
AU - Zhang, Wei
AU - Fujiki, Michiya
AU - Petrovsky, Nikolai
AU - Matisons, Janis
PY - 2013/8/13
Y1 - 2013/8/13
N2 - A series of novel amphiphiles were designed for self-assembly into chiral morphologies, the amphiphiles consisting of a glutamic acid (Glu) headgroup connected through an 11-carbon alkoxy chain to a diphenyldiazenyl (Azo) group and terminated with a variable length alkyl chain (R-Azo-11-Glu, where R denotes the number of carbons in the distal chain). TEM imaging of amphiphile aggregates self-assembled from heated, methanolic, aqueous solution showed that chiral order, expressed as twisted ribbons, helical ribbons, and helically based nanotubes, increased progressively up to a distal chain length containing eight carbons, and then decreased with further increases in distal chain length. TEM and CD showed that the chiral aggregations of single enantiomers were influenced by the molecular chirality of the headgroup. However, the assembly of d,l-10-Azo-11-Glu into nanotubes demonstrated that chiral symmetry breaking effected by the azo group was also relevant to the chiral organization of the amphiphiles. The chiral order of aggregate morphologies was additionally affected by the temperature and solvent composition of assembly in a manner correlated to the mechanism driving assembly; i.e., d,l-10-Azo-11-Glu was sensitive to the temperature of assembly but less so to solvent composition, while l-14-Azo-11-Glu was sensitive to solvent composition and not to temperature. FTIR and UV-vis spectroscopic investigations into the organization of the head and azo groups, in chiral and achiral structures, illustrated that a balance of the influences of the hydrophilic and hydrophobic components on self-assembly was required for the optimization of the chiral organization of the self-assembled structures.
AB - A series of novel amphiphiles were designed for self-assembly into chiral morphologies, the amphiphiles consisting of a glutamic acid (Glu) headgroup connected through an 11-carbon alkoxy chain to a diphenyldiazenyl (Azo) group and terminated with a variable length alkyl chain (R-Azo-11-Glu, where R denotes the number of carbons in the distal chain). TEM imaging of amphiphile aggregates self-assembled from heated, methanolic, aqueous solution showed that chiral order, expressed as twisted ribbons, helical ribbons, and helically based nanotubes, increased progressively up to a distal chain length containing eight carbons, and then decreased with further increases in distal chain length. TEM and CD showed that the chiral aggregations of single enantiomers were influenced by the molecular chirality of the headgroup. However, the assembly of d,l-10-Azo-11-Glu into nanotubes demonstrated that chiral symmetry breaking effected by the azo group was also relevant to the chiral organization of the amphiphiles. The chiral order of aggregate morphologies was additionally affected by the temperature and solvent composition of assembly in a manner correlated to the mechanism driving assembly; i.e., d,l-10-Azo-11-Glu was sensitive to the temperature of assembly but less so to solvent composition, while l-14-Azo-11-Glu was sensitive to solvent composition and not to temperature. FTIR and UV-vis spectroscopic investigations into the organization of the head and azo groups, in chiral and achiral structures, illustrated that a balance of the influences of the hydrophilic and hydrophobic components on self-assembly was required for the optimization of the chiral organization of the self-assembled structures.
UR - http://www.scopus.com/inward/record.url?scp=84881571861&partnerID=8YFLogxK
U2 - 10.1021/la401987y
DO - 10.1021/la401987y
M3 - Article
SN - 0743-7463
VL - 29
SP - 10001
EP - 10010
JO - Langmuir
JF - Langmuir
IS - 32
ER -