TY - JOUR
T1 - Combining artificial neural network classification with fully continuous probabilistic genotyping to remove the need for an analytical threshold and electropherogram reading
AU - Taylor, Duncan
AU - Buckleton, John
PY - 2023/1
Y1 - 2023/1
N2 - Standard processing of electrophoretic data within a forensic DNA laboratory is for one (or two) analysts to designate peaks as either artefactual or non-artefactual in a process commonly referred to as profile ‘reading’. Recently, FaSTR™ DNA has been developed to use artificial neural networks to automatically classify fluorescence within an electropherogram as baseline, allele, stutter or pull-up. These classifications are based on probabilities assigned to each timepoint (scan) within the electropherogram. Instead of using the probabilities to assign fluorescence into a category they can be used directly in the profile analysis. This has a number of advantages; increased objectivity in DNA profile processing, the removal for the need for analysts to read profiles, the removal for the need of an analytical threshold. Models within STRmix™ were extended to incorporate the peak label probabilities assigned by FaSTR™ DNA. The performance of the model extensions was tested on a DNA mixture dataset, comprising 2–4 person samples. This dataset was processed in a ‘standard’ manner using an analytical threshold of 50rfu, analyst peak designations and STRmix™ V2.9 models. The same dataset was then processed in an automated manner using no analytical threshold, no analysts reading the profile and using the STRmix™ models extended to incorporate peak label probabilities. Both datasets were compared to the known DNA donors and a set of non-donors. The result between the two processes was a very close performance, but with a large efficiency gain in the 0rfu process. Utilising peak label probabilities opens up the possibility for a range of workflow process efficiency gains, but beyond this allows full use of all data within an electropherogram.
AB - Standard processing of electrophoretic data within a forensic DNA laboratory is for one (or two) analysts to designate peaks as either artefactual or non-artefactual in a process commonly referred to as profile ‘reading’. Recently, FaSTR™ DNA has been developed to use artificial neural networks to automatically classify fluorescence within an electropherogram as baseline, allele, stutter or pull-up. These classifications are based on probabilities assigned to each timepoint (scan) within the electropherogram. Instead of using the probabilities to assign fluorescence into a category they can be used directly in the profile analysis. This has a number of advantages; increased objectivity in DNA profile processing, the removal for the need for analysts to read profiles, the removal for the need of an analytical threshold. Models within STRmix™ were extended to incorporate the peak label probabilities assigned by FaSTR™ DNA. The performance of the model extensions was tested on a DNA mixture dataset, comprising 2–4 person samples. This dataset was processed in a ‘standard’ manner using an analytical threshold of 50rfu, analyst peak designations and STRmix™ V2.9 models. The same dataset was then processed in an automated manner using no analytical threshold, no analysts reading the profile and using the STRmix™ models extended to incorporate peak label probabilities. Both datasets were compared to the known DNA donors and a set of non-donors. The result between the two processes was a very close performance, but with a large efficiency gain in the 0rfu process. Utilising peak label probabilities opens up the possibility for a range of workflow process efficiency gains, but beyond this allows full use of all data within an electropherogram.
KW - Artificial neural network
KW - Continuous DNA interpretation
KW - DNA mixtures
KW - Modelling artefacts
KW - STRmix
UR - http://www.scopus.com/inward/record.url?scp=85141888412&partnerID=8YFLogxK
U2 - 10.1016/j.fsigen.2022.102787
DO - 10.1016/j.fsigen.2022.102787
M3 - Article
C2 - 36270165
AN - SCOPUS:85141888412
VL - 62
JO - Forensic Science International: Genetics
JF - Forensic Science International: Genetics
SN - 1872-4973
M1 - 102787
ER -