Comparative study of natural terpenoid precursors in reactive plasmas for thin film deposition

Daniel S. Grant, Jakaria Ahmed, Jason D. Whittle, Andrew Michelmore, Krasimir Vasilev, Kateryna Bazaka, Mohan V. Jacob

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
1 Downloads (Pure)

Abstract

If plasma polymer thin films are to be synthesised from sustainable and natural precursors of chemically heterogeneous composition, it is important to understand the extent to which this composition influences the mechanism of polymerisation. To this end, a well‐studied monoterpene alcohol, terpinen‐4‐ol, has been targeted for a comparative study with the naturally occurring mix of terpenes (viz. Melaleuca alternifolia oil) from which it is commonly distilled. Positive ion mode mass spectra of both terpinen‐4‐ol and M. alternifolia oil showed a decrease in disparities between the type and abundance of cationic species formed in their respective plasma environments as applied plasma power was increased. Supplementary biological assay revealed the antibacterial action of both terpinen‐4‐ol and M. alternifolia derived coatings with respect to S. aureus bacteria, whilst cytocompatibility was demonstrated by comparable eukaryotic cell adhesion to both coatings. Elu-cidating the processes occurring within the reactive plasmas can enhance the economics of plasma polymer deposition by permitting use of the minimum power, time and precursor pre‐processing required to control the extent of monomer fragmentation and fabricate a film of the desired thick-ness and functionality.

Original languageEnglish
Article number4762
JournalMolecules
Volume26
Issue number16
DOIs
Publication statusPublished - Aug 2021
Externally publishedYes

Keywords

  • Natural precursors
  • plasma polymerisation
  • Tea tree oil
  • Thin films

Fingerprint

Dive into the research topics of 'Comparative study of natural terpenoid precursors in reactive plasmas for thin film deposition'. Together they form a unique fingerprint.

Cite this