TY - JOUR
T1 - Comparative transcriptome analysis in the hepatopancreas tissue of Pacific white Shrimp Litopenaeus vannamei fed different lipid sources at low salinity
AU - Chen, Ke
AU - Li, Erchao
AU - Xu, Zhixin
AU - Li, Tongyu
AU - Xu, Chang
AU - Qin, Jianguang
AU - Chen, Liqiao
PY - 2015/12/1
Y1 - 2015/12/1
N2 - RNA-seq was used to compare the transcriptomic response of hepatopancreas in juvenile Litopenaeus vannamei fed three diets with different lipid sources, including beef tallow (BT), fish oil (FO), and an equal combination of soybean oil + BT + linseed oil (SBL) for 8 weeks at 3 practical salinity unit (psu). A total of 9622 isogenes were annotated in 316 KEGG pathways and 39, 42 and 32 pathways significantly changed in the paired comparisons of FO vs SBL, BT vs SBL, or FO vs BT, respectively. The pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, fatty acid biosynthesis, fatty acid elongation, fatty acid degradation, and biosynthesis of unsaturated fatty acid were significantly changed in all paired comparisons between dietary lipid sources, and the pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism and glycerophospholipid metabolism significantly changed in the FO vs SBL and BT vs SBL comparisons. These pathways are associated with energy metabolism and cell membrane structure. The results indicate that lipids sources affect the adaptation of L. vannamei to low salinity by providing extra energy or specific fatty acids to change gill membrane structure and control iron balance. The results of this study lay a foundation for further understanding lipid or fatty acid metabolism in L. vannamei at low salinity.
AB - RNA-seq was used to compare the transcriptomic response of hepatopancreas in juvenile Litopenaeus vannamei fed three diets with different lipid sources, including beef tallow (BT), fish oil (FO), and an equal combination of soybean oil + BT + linseed oil (SBL) for 8 weeks at 3 practical salinity unit (psu). A total of 9622 isogenes were annotated in 316 KEGG pathways and 39, 42 and 32 pathways significantly changed in the paired comparisons of FO vs SBL, BT vs SBL, or FO vs BT, respectively. The pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, fatty acid biosynthesis, fatty acid elongation, fatty acid degradation, and biosynthesis of unsaturated fatty acid were significantly changed in all paired comparisons between dietary lipid sources, and the pathways of glycerolipid metabolism, linoleic acid metabolism, arachidonic acid metabolism and glycerophospholipid metabolism significantly changed in the FO vs SBL and BT vs SBL comparisons. These pathways are associated with energy metabolism and cell membrane structure. The results indicate that lipids sources affect the adaptation of L. vannamei to low salinity by providing extra energy or specific fatty acids to change gill membrane structure and control iron balance. The results of this study lay a foundation for further understanding lipid or fatty acid metabolism in L. vannamei at low salinity.
UR - http://www.scopus.com/inward/record.url?scp=84956706723&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0144889
DO - 10.1371/journal.pone.0144889
M3 - Article
SN - 1932-6203
VL - 10
SP - Art: e0144889
JO - PLoS One
JF - PLoS One
IS - 12
M1 - e0144889
ER -