TY - JOUR
T1 - Comparing multiple POI to DNA mixtures
AU - Hicks, Tacha
AU - Kerr, Zane
AU - Pugh, Simone
AU - Bright, Jo Anne
AU - Curran, James
AU - Taylor, Duncan
AU - Buckleton, John
PY - 2021/5
Y1 - 2021/5
N2 - In casework, laboratories may be asked to compare DNA mixtures to multiple persons of interest (POI). Guidelines on forensic DNA mixture interpretation recommend that analysts consider several pairs of propositions; however, it is unclear if several likelihood ratios (LRs) per person should be reported or not. The propositions communicated to the court should not depend on the value of the LR. As such, we suggest that the propositions should be functionally exhaustive. This implies that all propositions with a non-zero prior probability need to be considered, at least initially. Those that have a significant posterior probability need to be used in the final evaluation. Using standard probability theory we combine various propositions so that collectively they are exhaustive. This involves a prior probability that the sub-proposition is true, given that the primary proposition is true. Imagine a case in which there are two possible donors: i and j. We focus our analysis first on donor i so that the primary proposition is that i is one of the sources of the DNA. In this example, given that i is a donor, we would further consider that j is either a donor or not. In practice, the prior weights for these sub-propositions may be difficult to assign. However, the LR is often linearly related to these priors and its behaviour is predictable. We also believe that these priors are unavoidable and are hidden in alternative methods. We term the likelihood ratio formed from these context-exhaustive propositions LRi/i¯. LRi/i¯ is trialed in a set of two- and three-person mixtures. For two-person mixtures, LRi/i¯ is often well approximated by LRij/ja, where the subscript ij describes the proposition that i and j are the donors and ja describes the proposition that j and an alternate, unknown individual (a), who is unrelated to both i and j, are the donors. For three-person mixtures, LRi/i¯ is often well approximated by LRijk/jka where the subscript ijk describes the proposition that i, j, and k are the donors and jka describes the proposition that j, k, and an unknown, unrelated (to i, j, and k) individual (a) are the donors. In our simulations, LRij/ja had fewer inclusionary LRs for non-contributors than the unconditioned LR (LRia/aa).
AB - In casework, laboratories may be asked to compare DNA mixtures to multiple persons of interest (POI). Guidelines on forensic DNA mixture interpretation recommend that analysts consider several pairs of propositions; however, it is unclear if several likelihood ratios (LRs) per person should be reported or not. The propositions communicated to the court should not depend on the value of the LR. As such, we suggest that the propositions should be functionally exhaustive. This implies that all propositions with a non-zero prior probability need to be considered, at least initially. Those that have a significant posterior probability need to be used in the final evaluation. Using standard probability theory we combine various propositions so that collectively they are exhaustive. This involves a prior probability that the sub-proposition is true, given that the primary proposition is true. Imagine a case in which there are two possible donors: i and j. We focus our analysis first on donor i so that the primary proposition is that i is one of the sources of the DNA. In this example, given that i is a donor, we would further consider that j is either a donor or not. In practice, the prior weights for these sub-propositions may be difficult to assign. However, the LR is often linearly related to these priors and its behaviour is predictable. We also believe that these priors are unavoidable and are hidden in alternative methods. We term the likelihood ratio formed from these context-exhaustive propositions LRi/i¯. LRi/i¯ is trialed in a set of two- and three-person mixtures. For two-person mixtures, LRi/i¯ is often well approximated by LRij/ja, where the subscript ij describes the proposition that i and j are the donors and ja describes the proposition that j and an alternate, unknown individual (a), who is unrelated to both i and j, are the donors. For three-person mixtures, LRi/i¯ is often well approximated by LRijk/jka where the subscript ijk describes the proposition that i, j, and k are the donors and jka describes the proposition that j, k, and an unknown, unrelated (to i, j, and k) individual (a) are the donors. In our simulations, LRij/ja had fewer inclusionary LRs for non-contributors than the unconditioned LR (LRia/aa).
KW - Exhaustive
KW - Forensic DNA
KW - Likelihood ratio
KW - Multiple POI
KW - Propositions
UR - http://www.scopus.com/inward/record.url?scp=85101005042&partnerID=8YFLogxK
U2 - 10.1016/j.fsigen.2021.102481
DO - 10.1016/j.fsigen.2021.102481
M3 - Article
AN - SCOPUS:85101005042
SN - 1872-4973
VL - 52
JO - Forensic Science International: Genetics
JF - Forensic Science International: Genetics
M1 - 102481
ER -