TY - JOUR
T1 - Complementary immunohistochemical distribution of the neurofilament triplet and novel intermediate filament proteins in the autonomic and sensory nervous system of the guinea-pig
AU - Vickers, James C.
AU - Vitadello, Maurizio
AU - Parysek, Linda M.
AU - Costa, Marcello
PY - 1991/7
Y1 - 1991/7
N2 - We have previously established that immunoreactivity for the triplet of polypeptides that comprise the class IV intermediate filament proteins (NFP-triplet) is localized in specific subpopulations of neurons in guinea-pig sensory and autonomic ganglia. Antibodies to novel neurofilament proteins, including a polyclonal antibody to a 57 kDa neuronal intermediate filament polypeptide (NIF57kD) and a monoclonal antibody (CH1) to a 150kDa intermediate filament, or associated, protein were used in combination with antibodies to the NFP-triplet for double-labelling immunohistochemistry. The results show that different subpopulations of neurons in the guinea-pig dorsal root ganglia, coeliac ganglion and enteric ganglia can be distinguished by their complementary immunoreactivity for these proteins. In dorsal root ganglia, larger neurons are intensely immunoreactive for the NFP-triplet while immunoreactivity with CH1 and NIF57kD antibodies is restricted to the small to medium-sized neurons. In the coeliac ganglion, two regionally defined subpopulations of neurons can be distinguished by their immunoreactivity for either the NFP-triplet or NIF57kD, whereas CH1 labels all neurons with equal intensity. Three classes of morphologically distinct myenteric neuron subpopulations are also distinguished by their immunoreactivity for either the NFP-triplet, NIF57kD or CH1 antibodies. Two classes of submucous neurons are labelled both with CH1 and NIF57kD antibodies but show faint or no immunoreactivity for the NFP-triplet. It is concluded that intermediate filament protein immunoreactivity marks different subpopulations of neurons, which suggests that these proteins may have specific roles in neuronal function.
AB - We have previously established that immunoreactivity for the triplet of polypeptides that comprise the class IV intermediate filament proteins (NFP-triplet) is localized in specific subpopulations of neurons in guinea-pig sensory and autonomic ganglia. Antibodies to novel neurofilament proteins, including a polyclonal antibody to a 57 kDa neuronal intermediate filament polypeptide (NIF57kD) and a monoclonal antibody (CH1) to a 150kDa intermediate filament, or associated, protein were used in combination with antibodies to the NFP-triplet for double-labelling immunohistochemistry. The results show that different subpopulations of neurons in the guinea-pig dorsal root ganglia, coeliac ganglion and enteric ganglia can be distinguished by their complementary immunoreactivity for these proteins. In dorsal root ganglia, larger neurons are intensely immunoreactive for the NFP-triplet while immunoreactivity with CH1 and NIF57kD antibodies is restricted to the small to medium-sized neurons. In the coeliac ganglion, two regionally defined subpopulations of neurons can be distinguished by their immunoreactivity for either the NFP-triplet or NIF57kD, whereas CH1 labels all neurons with equal intensity. Three classes of morphologically distinct myenteric neuron subpopulations are also distinguished by their immunoreactivity for either the NFP-triplet, NIF57kD or CH1 antibodies. Two classes of submucous neurons are labelled both with CH1 and NIF57kD antibodies but show faint or no immunoreactivity for the NFP-triplet. It is concluded that intermediate filament protein immunoreactivity marks different subpopulations of neurons, which suggests that these proteins may have specific roles in neuronal function.
KW - Peripherin Coeliac ganglion Dorsal root ganglia Enteric ganglia
UR - http://www.scopus.com/inward/record.url?scp=0025744178&partnerID=8YFLogxK
U2 - 10.1016/0891-0618(91)90017-7
DO - 10.1016/0891-0618(91)90017-7
M3 - Article
C2 - 1930747
AN - SCOPUS:0025744178
SN - 0891-0618
VL - 4
SP - 259
EP - 270
JO - Journal of Chemical Neuroanatomy
JF - Journal of Chemical Neuroanatomy
IS - 4
ER -