Control-independent mosaic single nucleotide variant detection with DeepMosaic

Xiaoxu Yang, Xin Xu, Martin W. Breuss, Danny Antaki, Laurel L. Ball, Changuk Chung, Jiawei Shen, Chen Li, Renee D. George, Yifan Wang, Taejeong Bae, Yuhe Cheng, Alexej Abyzov, Liping Wei, Ludmil B. Alexandrov, Jonathan L. Sebat, NIMH Brain Somatic Mosaicism Network, Jennifer Erwin, Joseph G. Gleeson

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Mosaic variants (MVs) reflect mutagenic processes during embryonic development and environmental exposure, accumulate with aging and underlie diseases such as cancer and autism. The detection of noncancer MVs has been computationally challenging due to the sparse representation of nonclonally expanded MVs. Here we present DeepMosaic, combining an image-based visualization module for single nucleotide MVs and a convolutional neural network-based classification module for control-independent MV detection. DeepMosaic was trained on 180,000 simulated or experimentally assessed MVs, and was benchmarked on 619,740 simulated MVs and 530 independent biologically tested MVs from 16 genomes and 181 exomes. DeepMosaic achieved higher accuracy compared with existing methods on biological data, with a sensitivity of 0.78, specificity of 0.83 and positive predictive value of 0.96 on noncancer whole-genome sequencing data, as well as doubling the validation rate over previous best-practice methods on noncancer whole-exome sequencing data (0.43 versus 0.18). DeepMosaic represents an accurate MV classifier for noncancer samples that can be implemented as an alternative or complement to existing methods.

Original languageEnglish
Pages (from-to)870-877
Number of pages8
JournalNature Biotechnology
Volume41
Issue number6
DOIs
Publication statusPublished - Jun 2023
Externally publishedYes

Keywords

  • mosaic variants
  • mutagenic variants
  • Nucleotide
  • DeepMosaic
  • Embryonic development
  • Genomic analysis
  • machine learning
  • mutation

Fingerprint

Dive into the research topics of 'Control-independent mosaic single nucleotide variant detection with DeepMosaic'. Together they form a unique fingerprint.

Cite this