Abstract
Extreme high-temperature events pose a threat to human beings on Earth. In coastal cities, the sea breeze is widely known as a prevailing wind that can cool the near-surface air. However, the cumulative cooling effect and its attenuation process during the sea breeze penetration have not been well investigated. In this study, we analyze sea breeze cooling capacity (SBCC) and propose a new method in estimating the penetration distance of sea breeze cooling in metropolitan Adelaide during summer using data from the Adelaide urban heat island monitoring network. The results show that during a sea breeze day, wind direction rapidly changes from southeast to southwest in the morning, and it gradually returns to southeast in the afternoon. It takes 67 min on average for the sea breeze cooling fronts to penetrate inside metropolitan Adelaide. The SBCC value is 21.3 °C h per event averaged spatially in Adelaide summer. During the penetration process, the SBCC values decrease at a rate of 0.7 and 0.9 °C h per kilometer from coast to inland on an average sea breeze day and a hot sea breeze day, respectively. Correspondingly, the mean cooling penetration distances are 42 and 29 km along the prevailing wind path. A multiple linear regression analysis indicates that the distance from the coast and elevation at the onshore point together explain 88% of the spatial variability of the temporally average SBCC in the study area. The spatial pattern and penetration distance of the cumulative sea breeze cooling effect contribute to a better understanding of this common cooling source for heat mitigation in coastal cities where a large number of people reside.
Original language | English |
---|---|
Article number | 105409 |
Number of pages | 12 |
Journal | Atmospheric Research |
Volume | 250 |
Early online date | 8 Dec 2020 |
DOIs | |
Publication status | Published - Mar 2021 |
Keywords
- National Centre for Groundwater Research and Training
- sea breezes
- inland penetration
- temporal and spatial patterns of sea breeze cooling
- sea breeze cooling capacity
- Extreme high-temperature events