TY - JOUR
T1 - Coupled water and salt balance models for Lake Urmia
T2 - Salt precipitation and dissolution effects
AU - Sheibani, Sorour
AU - Ataie-Ashtiani, Behzad
AU - Safaie, Ammar
AU - Mossa Hosseini, Seiyed
PY - 2023/6
Y1 - 2023/6
N2 - Investigating the dynamic evolution of storage volume and salinity of Lake Urmia (LU), which is crucial to present more reliable estimations of water balance components, needs to be furthur studied. We aimed to fill this gap by developing a coupled lumped mathematical model that considered the two-way effect of salt and water balance components on each other. Through the coupled water and salt balance model, salt precipitation and dissolution components were incorporated, and vaporation was calculated dynamically based on the lake's salinity. The final model was then used as a tool to estimate the groundwater flux. Results indicated that during the lake shrinkage period (2009–2015), substantial salt precipitation with an average rate of 6.79 g/100 g/year (6.79 g of salt per 100 g water per year) occurred. In this period, the lake's salinity increased to more than 450 g/l, and a negative trend of −0.200 km3/year in evaporation was detected. From 2016 to 2019, LU's water level rose, and although great salt dissolution with an average rate of 4.27 g/100 g/year occurred, the lake's salinity decreased. In 2019, with the least lake's salinity values (annual average of 266.1 g/l), the evaporation rate was 1.45 times greater than the average evaporation rate through the rest of the simulation period. While LU's connection with groundwater resources varied temporally, the average groundwater flux (-0.203 km3/year) was higher than it could be neglected. Results of this study are expected to enhance the understanding of LU crisis and to improve the plan to prevent further shrinkage of the lake.
AB - Investigating the dynamic evolution of storage volume and salinity of Lake Urmia (LU), which is crucial to present more reliable estimations of water balance components, needs to be furthur studied. We aimed to fill this gap by developing a coupled lumped mathematical model that considered the two-way effect of salt and water balance components on each other. Through the coupled water and salt balance model, salt precipitation and dissolution components were incorporated, and vaporation was calculated dynamically based on the lake's salinity. The final model was then used as a tool to estimate the groundwater flux. Results indicated that during the lake shrinkage period (2009–2015), substantial salt precipitation with an average rate of 6.79 g/100 g/year (6.79 g of salt per 100 g water per year) occurred. In this period, the lake's salinity increased to more than 450 g/l, and a negative trend of −0.200 km3/year in evaporation was detected. From 2016 to 2019, LU's water level rose, and although great salt dissolution with an average rate of 4.27 g/100 g/year occurred, the lake's salinity decreased. In 2019, with the least lake's salinity values (annual average of 266.1 g/l), the evaporation rate was 1.45 times greater than the average evaporation rate through the rest of the simulation period. While LU's connection with groundwater resources varied temporally, the average groundwater flux (-0.203 km3/year) was higher than it could be neglected. Results of this study are expected to enhance the understanding of LU crisis and to improve the plan to prevent further shrinkage of the lake.
KW - Evaporation
KW - Groundwater interaction
KW - Lake Urmia
KW - Salt dissolution
KW - Salt precipitation
KW - Water balance
UR - http://www.scopus.com/inward/record.url?scp=85150764324&partnerID=8YFLogxK
U2 - 10.1016/j.jglr.2023.03.003
DO - 10.1016/j.jglr.2023.03.003
M3 - Article
AN - SCOPUS:85150764324
SN - 0380-1330
VL - 49
SP - 581
EP - 595
JO - Journal of Great Lakes Research
JF - Journal of Great Lakes Research
IS - 3
ER -