Coxiella burnetii dormancy in a fatal tenyear multisystem dysfunctional illness: Case report

Olga A. Sukocheva, Jim Manavis, Tuck Weng Kok, Mark Turra, Angelo Izzo, Peter Blumbergs, Barrie P. Marmion

    Research output: Contribution to journalArticlepeer-review

    11 Citations (Scopus)
    29 Downloads (Pure)


    Background: In a previous study of a Q fever outbreak in Birmingham, our group identified a non-infective complex of Coxiella burnetii (C.b.) antigens able to survive in the host and provoked aberrant humoral and cellmediated immunity responses. The study led to recognition of a possible pathogenic link between C.b. infection and subsequent long-term post Q fever fatigue syndrome (QFS). This report presents an unusually severe case of C.b. antigen and DNA detection in post-mortem specimens from a patient with QFS. Case presentation: We report a 19-year old female patient who became ill with an acute unexplained febrile encephalitis-like illness, followed by increasingly severe multisystem dysfunction and death 10 years later. During life, extensive clinical and laboratory investigations from different disciplinary stand points failed to deliver a definitive identification of a cause. Given the history of susceptibility to infection from birth, acute fever and the diagnosis of "post viral syndrome", tests for infective agents were done starting with C.b. and Legionella pneumophila. The patient had previously visited farms a number of times. Comprehensive neuropathological assessment at the time of autopsy had not revealed gross or microscopic abnormalities. The aim was to extend detailed studies with the post-mortem samples and identify possible factors driving severe disturbance of homeostasis and organ dysfunction exhibited by the course of the patient's ten-year illness. Immunohistochemistry for C.b. antigen and PCR for DNA were tested on paraffin embedded blocks of autopsy tissues from brain, spleen, liver, lymph nodes (LN), bone marrow (BM), heart and lung. Standard H&E staining of brain sections was unrevealing. Immuno-staining analysis for astrocyte cytoskeleton proteins using glial fibrillary acidic protein (GFAP) antibodies showed a reactive morphology. Coxiella antigens were demonstrated in GFAP immuno-positive grey and white matter astrocytes, spleen, liver, heart, BM and LN. PCR analysis (COM1/IS1111 genes) confirmed the presence of C.b. DNA in heart, lung, spleen, liver & LN, but not in brain or BM. Conclusion: The study revealed the persistence of C. b. cell components in various organs, including astrocytes of the brain, in a post-infection QFS. The possible mechanisms and molecular adaptations for this alternative C.b. life style are discussed.

    Original languageEnglish
    Article number165
    Number of pages8
    JournalBMC Infectious Diseases
    Issue number1
    Publication statusPublished - 18 Apr 2016

    Bibliographical note

    Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.


    • Antigen persistence
    • Chronic fatigue syndrome
    • Q Fever


    Dive into the research topics of 'Coxiella burnetii dormancy in a fatal tenyear multisystem dysfunctional illness: Case report'. Together they form a unique fingerprint.

    Cite this