Creating Nano-engineered Biomaterials with Well-Defined Surface Descriptors

Rahul M. Visalakshan, Melanie N. Macgregor, Alex A. Cavallaro, Salini Sasidharan, Akash Bachhuka, Agnieszka M. Mierczynska-Vasilev, John D. Hayball, Krasimir Vasilev

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)


The importance of nanostructured surfaces in a range of technological and biological processes is well-documented within literature, yet often ill-understood. Simple and reliable methods for the preparation of nanotextured surfaces are required to advance both fundamental understandings of nanoscale phenomena and our capacity to design nano-engineered materials for specific applications. Nano-engineered surfaces are, for instance, needed to shed light on the effect of nanostructures' size and density on immune cells cytokine production. In applied bioengineering, nanostructured artificial surfaces could be specifically tailored to enhance the osteo-integration of implants. This study presents a versatile, plasma polymer enabled method for the generation of surfaces with well-defined nanotopography and tailored outermost surface chemistry. This was achieved by finely controlling the covalent bonding of gold nanoparticles of desired size to plasma-deposited poly(methyloxazoline) interlayer deposited on the material substrate. An additional 5 nm thin polymer was deposited over the nanostructures providing a uniformly tailored outermost surface chemistry while preserving the topography. This rapid, versatile, substrate independent, and scalable strategy for the preparation of a well-defined nanotopography surface has promising prospects in many fields relying on surface engineering, including food and membrane technologies, biomaterial and environmental engineering, sensing, marine sciences, and even pollution control.

Original languageEnglish
Pages (from-to)2796-2807
Number of pages12
JournalACS Applied Nano Materials
Issue number6
Publication statusPublished - 22 Jun 2018
Externally publishedYes


  • biomaterial
  • homogeneous chemistry
  • nanoscale roughness
  • plasma polymerization
  • polymethyloxazoline
  • well-defined nanotopography


Dive into the research topics of 'Creating Nano-engineered Biomaterials with Well-Defined Surface Descriptors'. Together they form a unique fingerprint.

Cite this