TY - JOUR
T1 - Cytokine profiling of docetaxel-resistant castration-resistant prostate cancer
AU - Mahon, kate
AU - Lin, Hui-Ming
AU - Castillo, Lesley
AU - Lee, Brian
AU - Lee-Ang, Michelle
AU - Chatfield, Mark
AU - Chiam, Karen
AU - Breit, Samuel
AU - Brown, David
AU - Molloy, Mark
AU - MARX, Gavin
AU - Pavlakis, Nick
AU - Boyer, Michael
AU - Stockler, Martin
AU - Daly, Roger
AU - Henshall, Susan
AU - Horvath, Lisa
PY - 2015/4/14
Y1 - 2015/4/14
N2 - Background:Docetaxel improves symptoms and survival in metastatic castration-resistant prostate cancer (CRPC). However, ∼50% of patients are chemoresistant. This study examined whether changes in cytokine levels predict for docetaxel resistance in vitro and in a clinical cohort.Methods:PC3 cells or their docetaxel-resistant subline (PC3Rx) were co-cultured with U937 monocytes, with and without docetaxel treatment, and cytokine levels were measured. The circulating levels of 28 cytokines were measured pre-/post cycle 1 of docetaxel from 55 men with CRPC, and compared with prostate-specific antigen (PSA) response.Results:PC3Rx-U937 co-culture expressed more cytokines, chiefly markers of alternative macrophage differentiation, compared with PC3-U937 co-culture. Docetaxel treatment enhanced cytokine production by PC3Rx-U937 co-culture, while reducing cytokine levels in PC3-U937. In patients, changes in the levels of seven circulating cytokines (macrophage inhibitory cytokine 1 (MIC1), interleukin (IL)-1ra, IL-1β, IL-4, IL-6, IL-12 and IFNγ) after cycle 1 of docetaxel were associated with progressive disease (all P<0.05). The combination of changes in MIC1, IL-4 and IL-6 most strongly predicted PSA response (P=0.002).Conclusions:In vitro studies suggest docetaxel resistance is mediated, at least in part, by cytokines induced by the interaction between the docetaxel-resistant tumour cells and macrophages. Early changes in circulating cytokine levels were associated with docetaxel resistance in CRPC patients. When considered together, these data suggest a significant role for the inflammatory response and macrophages in the development of docetaxel resistance in CRPC.
AB - Background:Docetaxel improves symptoms and survival in metastatic castration-resistant prostate cancer (CRPC). However, ∼50% of patients are chemoresistant. This study examined whether changes in cytokine levels predict for docetaxel resistance in vitro and in a clinical cohort.Methods:PC3 cells or their docetaxel-resistant subline (PC3Rx) were co-cultured with U937 monocytes, with and without docetaxel treatment, and cytokine levels were measured. The circulating levels of 28 cytokines were measured pre-/post cycle 1 of docetaxel from 55 men with CRPC, and compared with prostate-specific antigen (PSA) response.Results:PC3Rx-U937 co-culture expressed more cytokines, chiefly markers of alternative macrophage differentiation, compared with PC3-U937 co-culture. Docetaxel treatment enhanced cytokine production by PC3Rx-U937 co-culture, while reducing cytokine levels in PC3-U937. In patients, changes in the levels of seven circulating cytokines (macrophage inhibitory cytokine 1 (MIC1), interleukin (IL)-1ra, IL-1β, IL-4, IL-6, IL-12 and IFNγ) after cycle 1 of docetaxel were associated with progressive disease (all P<0.05). The combination of changes in MIC1, IL-4 and IL-6 most strongly predicted PSA response (P=0.002).Conclusions:In vitro studies suggest docetaxel resistance is mediated, at least in part, by cytokines induced by the interaction between the docetaxel-resistant tumour cells and macrophages. Early changes in circulating cytokine levels were associated with docetaxel resistance in CRPC patients. When considered together, these data suggest a significant role for the inflammatory response and macrophages in the development of docetaxel resistance in CRPC.
KW - castration-resistant prostate cancer
KW - cytokines
KW - docetaxel chemotherapy
KW - macrophage
KW - therapeutic response
UR - http://www.scopus.com/inward/record.url?scp=84928215113&partnerID=8YFLogxK
U2 - 10.1038/bjc.2015.74
DO - 10.1038/bjc.2015.74
M3 - Article
SN - 0007-0920
VL - 112
SP - 1340
EP - 1348
JO - British Journal of Cancer
JF - British Journal of Cancer
IS - 8
ER -