Derivation of flow and transport parameters from outcropping sediments of the Neogene aquifer, Belgium

Bart Rogiers, Koen Beerten, Tuur Smeekens, Dirk Mallants, Matej Gedeon, Marijke Huysmans, Okke Batelaan, Dassargues Alain

    Research output: Contribution to journalArticlepeer-review

    7 Citations (Scopus)

    Abstract

    Centimetre-scale saturated hydraulic conductivities (K) are derived from air permeability measurements on a selection of outcrops of the Neogene aquifer in the Campine area, Belgium. Outcrop sediments are of Miocene to Quaternary age and have a marine to continental origin. Grain size analyses for the same outcrops and corresponding K predictions using previously developed models are also presented. We discuss outcrop hydrogeological properties and quantify the heterogeneity within the outcrops in detail using geostatistical variography. Moreover, outcrop-scale K values, their anisotropy and dispersivities are numerically calculated as a means to upscale such small-scale measurements to a larger scale commensurate with the scale of flow and transport modelling. By studying the small-scale variability as observed in outcrops, we gain crucial understanding of the larger-scale behaviour of the corresponding hydrogeological units within the Neogene aquifer, the most important groundwater reservoir of Flanders. The results of this study will equally improve conceptual hydrogeological model building and parameterization.

    Original languageEnglish
    Pages (from-to)129-147
    Number of pages19
    JournalGeologica Belgica
    Volume16
    Issue number3
    Publication statusPublished - 2013

    Keywords

    • Air permeameter
    • Anisotropy
    • Dispersivity
    • Grain size
    • Spatial variability
    • Upscaling

    Fingerprint Dive into the research topics of 'Derivation of flow and transport parameters from outcropping sediments of the Neogene aquifer, Belgium'. Together they form a unique fingerprint.

    Cite this