Design and Performance Evaluation of Polymer Matrix Composite Helical Springs

Ling Chen, Liwei Wu, Hongjun Fu, Youhong Tang

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
28 Downloads (Pure)


Helical springs are indispensable mechanical parts widely used in industry. Lightweight is one of the development trends of helical springs. In this study, three kinds of lightweight polymer matrix composite helical springs (PMCHSs) with unidirectional, multistrand, and wrapped textile structural reinforcement (PMCHS-U, PMCHS-M, and PMCHS-W) were designed, manufactured, and evaluated. The performance of these PMCHSs and the relationship between their performance and their corresponding polymer matrix composite spring wire rods (PMCRs) were studied through the torsion test of the PMCRs and the compression and resilience tests of the PMCHSs. The results showed that the performance of the PMCHSs could be effectively improved by using the wrapped structure as the reinforcement. The compression capacity of PMCHS-W was 72.6% and 137.5% higher than that of PMCHS-M and PMCHS-U, respectively. The resilience performance of the PMCHSs decreased with the increase in the spring constant. The performances of the PMCHSs and a steel spring were compared. The results showed that the spring constant of the steel spring could be achieved when the masses of PMCHS-U, PMCHS-M, and PMCHS-W were only 75%, 63%, and 49% of the mass of the steel spring, respectively. This research is of great significance to the improvement in lightweight spring performance.

Original languageEnglish
Article number3900
Number of pages12
Issue number18
Publication statusPublished - Sept 2022


  • compression
  • polymer matrix composite helical spring
  • polymer matrix composite spring wire rod
  • resilience
  • torsion


Dive into the research topics of 'Design and Performance Evaluation of Polymer Matrix Composite Helical Springs'. Together they form a unique fingerprint.

Cite this