TY - JOUR
T1 - Development of a physiological-based model that uses standard polysomnography and clinical data to predict oral appliance treatment outcomes in obstructive sleep apnea
AU - Dutta, Ritaban
AU - Tong, Benjamin K.
AU - Eckert, Danny J.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - STUDY OBJECTIVES: Oral appliance (OA) therapy is a well-tolerated alternative to continuous positive airway pressure. However, it is less efficacious. A major unresolved clinical challenge is the inability to accurately predict who will respond to OA therapy. We recently developed a model to estimate obstructive sleep apnea pathophysiological endotypes. This study aimed to apply this physiological-based model to predict OA treatment responses. METHODS: Sixty-two men and women with obstructive sleep apnea (aged 29-71 years) were studied to investigate the efficacy of a novel OA device. An in-laboratory diagnostic followed by an OA treatment efficacy polysomnography were performed. Seven polysomnography variables from the diagnostic study plus age and body mass index were included in our machine-learning-based model to predict OA therapy response according to standard apnea-hypopnea index (AHI) definitions. Initially, the model was trained on data from the first 45 participants using 10-fold cross-validation. A blinded independent validation was then performed for the remaining 17 participants. RESULTS: Mean accuracy of the trained model to predict OA therapy responders vs nonresponders (AHI < 5 events/h) using 10-fold cross-validation was 91% ± 8%. In the independent blinded validation, 100% (AHI < 5 events/h); 59% (AHI < 10 events/h); 71% (50% reduction in AHI); and 82% (50% reduction in AHI to < 20 events/h) of the 17 participants were correctly classified for each of the treatment outcome definitions respectively. CONCLUSIONS: While further evaluation in larger clinical data sets is required, these findings highlight the potential to use routinely collected sleep study and clinical data with machine learning-based approaches underpinned by obstructive sleep apnea endotype concepts to help predict treatment outcomes to OA therapy for people with obstructive sleep apnea. CITATION: Dutta R, Tong BK, Eckert DJ. Development of a physiological-based model that uses standard polysomnography and clinical data to predict oral appliance treatment outcomes in obstructive sleep apnea. J Clin Sleep Med. 2022;18(3):861-870.
AB - STUDY OBJECTIVES: Oral appliance (OA) therapy is a well-tolerated alternative to continuous positive airway pressure. However, it is less efficacious. A major unresolved clinical challenge is the inability to accurately predict who will respond to OA therapy. We recently developed a model to estimate obstructive sleep apnea pathophysiological endotypes. This study aimed to apply this physiological-based model to predict OA treatment responses. METHODS: Sixty-two men and women with obstructive sleep apnea (aged 29-71 years) were studied to investigate the efficacy of a novel OA device. An in-laboratory diagnostic followed by an OA treatment efficacy polysomnography were performed. Seven polysomnography variables from the diagnostic study plus age and body mass index were included in our machine-learning-based model to predict OA therapy response according to standard apnea-hypopnea index (AHI) definitions. Initially, the model was trained on data from the first 45 participants using 10-fold cross-validation. A blinded independent validation was then performed for the remaining 17 participants. RESULTS: Mean accuracy of the trained model to predict OA therapy responders vs nonresponders (AHI < 5 events/h) using 10-fold cross-validation was 91% ± 8%. In the independent blinded validation, 100% (AHI < 5 events/h); 59% (AHI < 10 events/h); 71% (50% reduction in AHI); and 82% (50% reduction in AHI to < 20 events/h) of the 17 participants were correctly classified for each of the treatment outcome definitions respectively. CONCLUSIONS: While further evaluation in larger clinical data sets is required, these findings highlight the potential to use routinely collected sleep study and clinical data with machine learning-based approaches underpinned by obstructive sleep apnea endotype concepts to help predict treatment outcomes to OA therapy for people with obstructive sleep apnea. CITATION: Dutta R, Tong BK, Eckert DJ. Development of a physiological-based model that uses standard polysomnography and clinical data to predict oral appliance treatment outcomes in obstructive sleep apnea. J Clin Sleep Med. 2022;18(3):861-870.
KW - dental sleep medicine
KW - endotype
KW - mandibular advancement device
KW - pathophysiology
KW - precision medicine
KW - sleep-disordered breathing
UR - http://www.scopus.com/inward/record.url?scp=85125551260&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/NHMRC/1116942
UR - http://purl.org/au-research/grants/NHMRC/1196261
U2 - 10.5664/jcsm.9742
DO - 10.5664/jcsm.9742
M3 - Article
C2 - 34710038
AN - SCOPUS:85125551260
SN - 1550-9389
VL - 18
SP - 861
EP - 870
JO - Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine
JF - Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine
IS - 3
ER -