Differential allelic representation (DAR) identifies candidate eQTLs and improves transcriptome analysis

Lachlan Baer, Karissa Barthelson, John H. Postlethwait, David L. Adelson, Stephen M. Pederson, Michael Lardelli

Research output: Contribution to journalArticlepeer-review

52 Downloads (Pure)

Abstract

In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when the effects of homozygosity for recessive mutations are studied in non-isogenic backgrounds, genes located proximal to the mutation on the same chromosome often appear over-represented among those genes identified as differentially expressed (DE). One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect functional responses to the mutation but, instead, result from an unequal distribution of expression quantitative trait loci (eQTLs) between sample groups of mutant or wild-type genotypes. This is problematic because eQTL expression differences are difficult to distinguish from genes that are DE due to functional responses to a mutation. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) are also observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between those sample groups subjected to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting-based approaches. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. Our method for DAR analysis requires only RNA-sequencing data, facilitating its application across new and existing datasets.

Original languageEnglish
Article numbere1011868
Number of pages27
JournalPLOS Computational Biology
Volume20
Issue number2
DOIs
Publication statusPublished - 12 Feb 2024

Keywords

  • Genotypes
  • Differential allelic representation (DAR)
  • Transcriptome analysis

Fingerprint

Dive into the research topics of 'Differential allelic representation (DAR) identifies candidate eQTLs and improves transcriptome analysis'. Together they form a unique fingerprint.

Cite this