Distribution and Substitution Mechanism of Ge in a Ge_(Fe)-Bearing Sphalerite

Nigel Cook, Barbara Etschmann, Cristiana Ciobanu, Kalotina Geraki, Daryl Howard, Timothy Williams, Nick Rae, Allan Pring, Guorong Chen, Bernt Johannessen, Joel Brugger

    Research output: Contribution to journalArticlepeer-review

    41 Citations (Scopus)

    Abstract

    The distribution and substitution mechanism of Ge in the Ge-rich sphalerite from the Tres Marias Zn deposit, Mexico, was studied using a combination of techniques at μm- to atomic scales. Trace element mapping by Laser Ablation Inductively Coupled Mass Spectrometry shows that Ge is enriched in the same bands as Fe, and that Ge-rich sphalerite also contains measurable levels of several other minor elements, including As, Pb and Tl. Micron- to nanoscale heterogeneity in the sample, both textural and compositional, is revealed by investigation using Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) combined with Synchrotron X-ray Fluorescence mapping and High-Resolution Transmission Electron Microscopy imaging of FIB-prepared samples. Results show that Ge is preferentially incorporated within Fe-rich sphalerite with textural complexity finer than that of the microbeam used for the X-ray Absorption Near Edge Structure (XANES) measurements. Such heterogeneity, expressed as intergrowths between 3C sphalerite and 2H wurtzite on [110] zones, could be the result of either a primary growth process, or alternatively, polystage crystallization, in which early Fe-Ge-rich sphalerite is partially replaced by Fe-Ge-poor wurtzite. FIB-SEM imaging shows evidence for replacement supporting the latter. Transformation of sphalerite into wurtzite is promoted by (111)* twinning or lattice-scale defects, leading to a heterogeneous ZnS sample, in which the dominant component, sphalerite, can host up to ~20% wurtzite. Ge K-edge XANES spectra for this sphalerite are identical to those of the germanite and argyrodite standards and the synthetic chalcogenide glasses GeS2 and GeSe2, indicating the Ge formally exists in the tetravalent form in this sphalerite. Fe K-edge XANES spectra for the same sample indicate that Fe is present mainly as Fe2+, and Cu K-edge XANES spectra are characteristic for Cu+. Since there is no evidence for coupled substitution involving a monovalent element, we propose that Ge4+ substitutes for (Zn2+, Fe2+) with vacancies in the structure to compensate for charge balance. This study shows the utility of synchrotron radiation combined with electron beam micro-analysis in investigating low-level concentrations of minor metals in common sulfides.

    Original languageEnglish
    Pages (from-to)117-132
    Number of pages16
    JournalMinerals
    Volume5
    Issue number2
    DOIs
    Publication statusPublished - 24 Mar 2015

    Keywords

    • Germanium
    • Oxidation state
    • Sphalerite
    • Synchrotron radiation
    • XANES spectroscopy (Ge; Fe; Cu K-edges)

    Fingerprint Dive into the research topics of 'Distribution and Substitution Mechanism of Ge in a Ge_(Fe)-Bearing Sphalerite'. Together they form a unique fingerprint.

    Cite this