Distributions of neuropeptides in the human esophagus

D. A. Wattchow, J. B. Furness, M. Costa, P. E. O'Brien, M. Peacock

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)

Abstract

The distributions of nerve cells and fibers with immunoreactivity for the peptides substance P, somatostatin, enkephalin, vasoactive intestinal peptide, gastrin-releasing peptide, and neuropeptide Y and the enzyme tyrosine hydroxylase were examined in 25 samples of human esophagus. These were compared with samples of stomach and intestine. In the smooth muscle of the muscularis externa, the muscularis mucosae, and beneath the epithelium, the most abundant nerve fibers contained vasoactive intestinal peptide and neuropeptide Y, in contrast to the scarcity of substance P, enkephalin, somatostatin, and gastrin-releasing peptide. Gastric and intestinal samples contained dense populations of fibers containing vasoactive intestinal peptide, neuropeptide Y, substance P, and enkephalin in the equivalent layers, but somatostatin- and gastrin-releasing peptide-immunoreactive fibers were scarce. Complete coexistence of vasoactive intestinal peptide and neuropeptide Y in nerve fibers within the muscle layers was demonstrated in the esophagus, but not in gastric and intestinal samples. The myenteric plexus along the length of the esophagus contained cell bodies and fibers reactive for vasoactive intestinal peptide, neuropeptide Y, enkephalin, and substance P. Somatostatin-immunoreactive cell bodies were very rare in the myenteric plexus, no gastrin-releasing peptide-immunoreactive cell bodies were seen, and both somatostatin and gastrin-releasing peptide-immunoreactive fibers were rare. In the upper esophagus, striated muscle bundles did not contain nerve fibers reactive for these peptides but immunoreactive fibers were seen in the muscularis mucosae and subepithelium. It is concluded that the esophagus has a different pattern of innervation by peptide-containing neurons than the stomach and intestines. Esophageal neurons can be classified into separate classes on the basis of their peptide content.

Original languageEnglish
Pages (from-to)1363-1371
Number of pages9
JournalGastroenterology
Volume93
Issue number6
DOIs
Publication statusPublished - Dec 1987

Fingerprint

Dive into the research topics of 'Distributions of neuropeptides in the human esophagus'. Together they form a unique fingerprint.

Cite this