TY - JOUR
T1 - Do 3-D Printed Handheld Models Improve Surgeon Reliability for Recognition of Intraarticular Distal Radius Fracture Characteristics?
AU - Langerhuizen, David W.G.
AU - Doornberg, Job N.
AU - Janssen, Michiel M.A.
AU - Kerkhoffs, Gino M.M.J.
AU - Jaarsma, Ruurd L.
AU - Janssen, Stein J.
PY - 2020/12
Y1 - 2020/12
N2 - BACKGROUND: For fracture care, radiographs and two-dimensional (2-D) and three-dimensional (3-D) CT are primarily used for preoperative planning and postoperative evaluation. Intraarticular distal radius fractures are technically challenging to treat, and meticulous preoperative planning is paramount to improve the patient's outcome. Three-dimensionally printed handheld models might improve the surgeon's interpretation of specific fracture characteristics and patterns preoperatively and could therefore be clinically valuable; however, the additional value of 3-D printed handheld models for fractures of the distal radius, a high-volume and commonly complex fracture due to its intraarticular configuration, has yet to be determined. QUESTIONS/PURPOSES: (1) Does the reliability of assessing specific fracture characteristics that guide surgical decision-making for distal radius fractures improve with 3-D printed handheld models? (2) Does surgeon agreement on the overall fracture classification improve with 3-D printed handheld models? (3) Does the surgeon's confidence improve when assessing the overall fracture configuration with an additional 3-D model? METHODS: We consecutively included 20 intraarticular distal radius fractures treated at a Level 1 trauma center between May 2018 and November 2018. Ten surgeons evaluated the presence or absence of specific fracture characteristics (volar rim fracture, die punch, volar lunate facet, dorsal comminution, step-off > 2 mm, and gap > 2 mm), fracture classification according to the AO/Orthopaedic Trauma Association (OTA) classification scheme, and their confidence in assessing the overall fracture according to the classification scheme, rated on a scale from 0 to 10 (0 = not at all confident to 10 = very confident). Of 10 participants regularly treating distal radius fractures, seven were orthopaedic trauma surgeons and three upper limb surgeons with experience levels ranging from 1 to 25 years after completion of residency training. Fractures were assessed twice, with 1 month between each assessment. Initially, fractures were assessed using radiographs and 2-D and 3-D CT images (conventional assessment); the second time, the evaluation was based on radiographs and 2-D and 3-D CT images with an additional 3-D handheld model (3-D printed handheld model assessment). On both occasions, fracture characteristics were evaluated upon a surgeon's own interpretation, without specific instruction before assessment. We provided a sheet demonstrating the AO/OTA classification scheme before evaluation on each session. Multi-rater Fleiss's kappa was used to determine intersurgeon reliability for assessing fracture characteristics and classification. Confidence regarding assessment of the overall fracture classification was assessed using a paired t-test. RESULTS: We found that 3-D printed models of intraarticular distal radius fractures led to no change in kappa values for the reliability of all characteristics: volar rim (conventional kappa 0.19 [95% CI 0.06 to 0.32], kappa for 3-D handheld model 0.23 [95% CI 0.11 to 0.36], difference of kappas 0.04 [95% CI -0.14 to 0.22]; p = 0.66), die punch (conventional kappa 0.38 [95% CI 0.15 to 0.61], kappa for 3-D handheld model 0.50 [95% CI 0.23 to 0.78], difference of kappas 0.12 [95% CI -0.23 to 0.47]; p = 0.52), volar lunate facet (conventional kappa 0.31 [95% CI 0.14 to 0.49], kappa for 3-D handheld model 0.48 [95% CI 0.23 to 0.72], difference of kappas 0.17 [95% CI -0.12 to 0.46]; p = 0.26), dorsal comminution (conventional kappa 0.36 [95% CI 0.13 to 0.58], kappa for 3-D handheld model 0.31 [95% CI 0.11 to 0.51], difference of kappas -0.05 [95% CI -0.34 to 0.24]; p = 0.74), step-off > 2 mm (conventional kappa 0.55 [95% CI 0.29 to 0.82], kappa for 3-D handheld model 0.58 [95% CI 0.31 to 0.85], difference of kappas 0.03 [95% CI -0.34 to 0.40]; p = 0.87), gap > 2 mm (conventional kappa 0.59 [95% CI 0.39 to 0.79], kappa for 3-D handheld model 0.69 [95% CI 0.50 to 0.89], difference of kappas 0.10 [95% CI -0.17 to 0.37]; p = 0.48). Although there appeared to be categorical improvement in kappa values for some fracture characteristics, overlapping CIs indicated no change. Fracture classification did not improve (conventional diagnostics: kappa 0.27 [95% CI 0.14 to 0.39], conventional diagnostics with an additional 3-D handheld model: kappa 0.25 [95% CI 0.15 to 0.35], difference of kappas: -0.02 [95% CI -0.18 to 0.14]; p = 0.81). There was no improvement in self-assessed confidence in terms of assessment of overall fracture configuration when a 3-D model was added to the evaluation process (conventional diagnostics 7.8 [SD 0.79 {95% CI 7.2 to 8.3}], 3-D handheld model 8.5 [SD 0.71 {95% CI 8.0 to 9.0}], difference of score: 0.7 [95% CI -1.69 to 0.16], p = 0.09). CONCLUSIONS: Intersurgeon reliability for evaluating the characteristics of and classifying intraarticular distal radius fractures did not improve with an additional 3-D model. Further studies should evaluate the added value of 3-D printed handheld models for teaching surgical residents and medical trainees to define the future role of 3-D printing in caring for fractures of the distal radius. LEVEL OF EVIDENCE: Level II, diagnostic study.
AB - BACKGROUND: For fracture care, radiographs and two-dimensional (2-D) and three-dimensional (3-D) CT are primarily used for preoperative planning and postoperative evaluation. Intraarticular distal radius fractures are technically challenging to treat, and meticulous preoperative planning is paramount to improve the patient's outcome. Three-dimensionally printed handheld models might improve the surgeon's interpretation of specific fracture characteristics and patterns preoperatively and could therefore be clinically valuable; however, the additional value of 3-D printed handheld models for fractures of the distal radius, a high-volume and commonly complex fracture due to its intraarticular configuration, has yet to be determined. QUESTIONS/PURPOSES: (1) Does the reliability of assessing specific fracture characteristics that guide surgical decision-making for distal radius fractures improve with 3-D printed handheld models? (2) Does surgeon agreement on the overall fracture classification improve with 3-D printed handheld models? (3) Does the surgeon's confidence improve when assessing the overall fracture configuration with an additional 3-D model? METHODS: We consecutively included 20 intraarticular distal radius fractures treated at a Level 1 trauma center between May 2018 and November 2018. Ten surgeons evaluated the presence or absence of specific fracture characteristics (volar rim fracture, die punch, volar lunate facet, dorsal comminution, step-off > 2 mm, and gap > 2 mm), fracture classification according to the AO/Orthopaedic Trauma Association (OTA) classification scheme, and their confidence in assessing the overall fracture according to the classification scheme, rated on a scale from 0 to 10 (0 = not at all confident to 10 = very confident). Of 10 participants regularly treating distal radius fractures, seven were orthopaedic trauma surgeons and three upper limb surgeons with experience levels ranging from 1 to 25 years after completion of residency training. Fractures were assessed twice, with 1 month between each assessment. Initially, fractures were assessed using radiographs and 2-D and 3-D CT images (conventional assessment); the second time, the evaluation was based on radiographs and 2-D and 3-D CT images with an additional 3-D handheld model (3-D printed handheld model assessment). On both occasions, fracture characteristics were evaluated upon a surgeon's own interpretation, without specific instruction before assessment. We provided a sheet demonstrating the AO/OTA classification scheme before evaluation on each session. Multi-rater Fleiss's kappa was used to determine intersurgeon reliability for assessing fracture characteristics and classification. Confidence regarding assessment of the overall fracture classification was assessed using a paired t-test. RESULTS: We found that 3-D printed models of intraarticular distal radius fractures led to no change in kappa values for the reliability of all characteristics: volar rim (conventional kappa 0.19 [95% CI 0.06 to 0.32], kappa for 3-D handheld model 0.23 [95% CI 0.11 to 0.36], difference of kappas 0.04 [95% CI -0.14 to 0.22]; p = 0.66), die punch (conventional kappa 0.38 [95% CI 0.15 to 0.61], kappa for 3-D handheld model 0.50 [95% CI 0.23 to 0.78], difference of kappas 0.12 [95% CI -0.23 to 0.47]; p = 0.52), volar lunate facet (conventional kappa 0.31 [95% CI 0.14 to 0.49], kappa for 3-D handheld model 0.48 [95% CI 0.23 to 0.72], difference of kappas 0.17 [95% CI -0.12 to 0.46]; p = 0.26), dorsal comminution (conventional kappa 0.36 [95% CI 0.13 to 0.58], kappa for 3-D handheld model 0.31 [95% CI 0.11 to 0.51], difference of kappas -0.05 [95% CI -0.34 to 0.24]; p = 0.74), step-off > 2 mm (conventional kappa 0.55 [95% CI 0.29 to 0.82], kappa for 3-D handheld model 0.58 [95% CI 0.31 to 0.85], difference of kappas 0.03 [95% CI -0.34 to 0.40]; p = 0.87), gap > 2 mm (conventional kappa 0.59 [95% CI 0.39 to 0.79], kappa for 3-D handheld model 0.69 [95% CI 0.50 to 0.89], difference of kappas 0.10 [95% CI -0.17 to 0.37]; p = 0.48). Although there appeared to be categorical improvement in kappa values for some fracture characteristics, overlapping CIs indicated no change. Fracture classification did not improve (conventional diagnostics: kappa 0.27 [95% CI 0.14 to 0.39], conventional diagnostics with an additional 3-D handheld model: kappa 0.25 [95% CI 0.15 to 0.35], difference of kappas: -0.02 [95% CI -0.18 to 0.14]; p = 0.81). There was no improvement in self-assessed confidence in terms of assessment of overall fracture configuration when a 3-D model was added to the evaluation process (conventional diagnostics 7.8 [SD 0.79 {95% CI 7.2 to 8.3}], 3-D handheld model 8.5 [SD 0.71 {95% CI 8.0 to 9.0}], difference of score: 0.7 [95% CI -1.69 to 0.16], p = 0.09). CONCLUSIONS: Intersurgeon reliability for evaluating the characteristics of and classifying intraarticular distal radius fractures did not improve with an additional 3-D model. Further studies should evaluate the added value of 3-D printed handheld models for teaching surgical residents and medical trainees to define the future role of 3-D printing in caring for fractures of the distal radius. LEVEL OF EVIDENCE: Level II, diagnostic study.
KW - 3-D Printed Models
KW - 3D Printed Models
KW - Surgeon Reliability
KW - Distal Radius Fracture
KW - Amsterdam University Medical Centre
KW - Flinders Medical Centre
KW - Association of Bone and Joint Surgeons
KW - Intraarticular configuration
UR - http://www.scopus.com/inward/record.url?scp=85096441627&partnerID=8YFLogxK
U2 - 10.1097/CORR.0000000000001356
DO - 10.1097/CORR.0000000000001356
M3 - Article
C2 - 32667759
AN - SCOPUS:85096441627
SN - 0009-921X
VL - 478
SP - 2901
EP - 2908
JO - Clinical orthopaedics and related research
JF - Clinical orthopaedics and related research
IS - 12
ER -