Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes

Bo Zhu, Yaoxin Hu, Stephen Kennedy, Nicholas Milne, Gayle Morris, Wanqin Jin, Stephen Gray, Mikel Duke

    Research output: Contribution to journalArticle

    29 Citations (Scopus)

    Abstract

    Water recycling via treatment from industrial and/or municipal waste sources is one of the key strategies for resolving water shortages worldwide. Polymer membranes are effective at improving the water quality essential for recycling, but depend on regular cleaning and replacement. Pure ceramic membranes can reduce the cleaning need and last significantly longer in the same applications while possessing the possibility of operating in more aggressive environments not suitable for polymers. In the current work, filtration using a tubular ceramic membrane (α-Al2O3 or TiO2) was combined with ozonation to remove organic compounds present in a secondary effluent to enhance key quality features of the water (colour and total organic carbon, TOC) for its potential reuse.'Bare' commercial α-Al2O3 filters (pore size ∼0.58μm) were tested as a microfiltration membrane and compared with the more advanced catalytically active TiO2 layer that was formed by the sol-gel method. The presence of anatase with a 4nm pore size at the membrane surface was confirmed by X-ray diffraction (XRD) and N2 adsorption. Filtration of the effluent over a 2h period led to a reduction in flux to 45% and 60% of the initial values for the α-alumina and TiO2 membrane, respectively. However, a brief dose (2min) of ozone at the start of the run resulted in reductions to only 70% of the initial flux for both membranes. It is likely that the oxide's functional property facilitated the formation of hydroxyl (OH) or other radicals on the membrane surface from ozone decomposition which targeted the breakdown of organic foulants thus inhibiting their deposition. Interestingly, the porous structure therefore acted in a synergistic, dual function mode to physically separate the particulates while also catalytically breaking down organic matter. The system also greatly improved the efficiency of membrane filtration for the reduction of colour, A254 (organics absorption at the wavelength of 254nm) and TOC. The best performance came from combined ozonation (2min ozonation time with an estimated applied ozone dose of 8mgL-1) with the TiO2 membrane, which was able to reduce colour by 88%, A254 by 75% and TOC by 43%. It is clearly evident that a synergistic effect occurs with the process combination of ozonation and ceramic membrane filtration demonstrating the practical benefit of combining ceramic membrane filtration with conventional water ozonation.

    Original languageEnglish
    Pages (from-to)61-72
    Number of pages12
    JournalJournal of Membrane Science
    Volume378
    Issue number1-2
    DOIs
    Publication statusPublished - 15 Aug 2011

    Keywords

    • Ceramic membrane
    • Filtration
    • Ozonation
    • Titania
    • Water reuse

    Fingerprint Dive into the research topics of 'Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes'. Together they form a unique fingerprint.

    Cite this