Abstract
Traditionally, standalone groundwater models have required highly uncertain recharge and groundwater evapotranspiration inputs as driving forces. Such models, together with land surface and unsaturated zone standalone models, are gradually being replaced by integrated hydrological models (IHMs), which dynamically couple surface and groundwater fluxes across the unsaturated zone. Remote sensing (RS) and hydrogeophysics (HG) can provide a wealth of data for IHMs.
As the top boundary of IHMs is at the land surface, satellite RS can contribute to defining: (i) driving force components (precipitation, interception, potential evapotranspiration); (ii) model boundaries and terrain slopes, constraining surface runoff through digital elevation model (DEM); (iii) parametrization of spatial infiltration through soil type and texture; (iv) stages of surface water bodies applied either as boundary condition or as observations to constrain state variables in model calibration and data assimilation; (v) actual evapotranspiration and soil moisture applied as observations to constrain state variables in model calibration and data assimilation; and (vi) changes in terrestrial water storage (TWS) from GRACE satellite data (Humphrey et al., 2023), applied to validate mesoscale models or to constrain their calibration and data assimilation...
As the top boundary of IHMs is at the land surface, satellite RS can contribute to defining: (i) driving force components (precipitation, interception, potential evapotranspiration); (ii) model boundaries and terrain slopes, constraining surface runoff through digital elevation model (DEM); (iii) parametrization of spatial infiltration through soil type and texture; (iv) stages of surface water bodies applied either as boundary condition or as observations to constrain state variables in model calibration and data assimilation; (v) actual evapotranspiration and soil moisture applied as observations to constrain state variables in model calibration and data assimilation; and (vi) changes in terrestrial water storage (TWS) from GRACE satellite data (Humphrey et al., 2023), applied to validate mesoscale models or to constrain their calibration and data assimilation...
Original language | English |
---|---|
Article number | 1217946 |
Number of pages | 3 |
Journal | Frontiers in Water |
Volume | 5 |
DOIs | |
Publication status | Published - 1 Jun 2023 |
Keywords
- groundwater
- hydrogeophysics
- integrated hydrological models
- remote sensing
- surface water