TY - JOUR
T1 - Effect of Alkyl Side Chain Length on Intra- And Intermolecular Interactions of Terthiophene-Isoindigo Copolymers
AU - Tegegne, Newayemedhin A.
AU - Abdissa, Zelalem
AU - Mammo, Wendimagegn
AU - Uchiyama, Takayuki
AU - Okada-Shudo, Yoshiko
AU - Galeotti, Francesco
AU - Porzio, William
AU - Andersson, Mats R.
AU - Schlettwein, Derck
AU - Vohra, Varun
AU - Schwoerer, Heinrich
PY - 2020/5/7
Y1 - 2020/5/7
N2 - Two terthiophene-isoindigo copolymers (P3TI-O and P3TI-D) were successfully designed and synthesized. Octyl (O) and dodecyl (D) alkyl side chains were appended at the third position of the first and fourth positions of the last thiophene on the terthiophene donor units in P3TI-O and P3TI-D, respectively. The band gaps of these copolymers were less than 1.7 eV. We found intramolecular charge-transfer states in both copolymers, which were generated with time constants of 4.5 and 13 ps for the copolymers with short and long alkyl side chains on their donor units, respectively. These results indicate that an almost 3-fold faster intramolecular charge-transfer process occurs when the alkyl side chains are shortened by four methyl units. Owing to a better interchain charge transfer, P3TI-O exhibits a more efficient exciton diffusion compared to P3TI-D, thus leading to longer exciton lifetimes in the copolymer with shorter alkyl side chains. Consequently, when blended with PC71BM in bulk heterojunctions, P3TI-O showed a better exciton dissociation efficiency compared to P3TI-D. These results correlate well with the higher short-circuit current densities observed in P3TI-O:PC71BM inverted architecture organic solar cells compared to the P3TI-D:PC71BM ones.
AB - Two terthiophene-isoindigo copolymers (P3TI-O and P3TI-D) were successfully designed and synthesized. Octyl (O) and dodecyl (D) alkyl side chains were appended at the third position of the first and fourth positions of the last thiophene on the terthiophene donor units in P3TI-O and P3TI-D, respectively. The band gaps of these copolymers were less than 1.7 eV. We found intramolecular charge-transfer states in both copolymers, which were generated with time constants of 4.5 and 13 ps for the copolymers with short and long alkyl side chains on their donor units, respectively. These results indicate that an almost 3-fold faster intramolecular charge-transfer process occurs when the alkyl side chains are shortened by four methyl units. Owing to a better interchain charge transfer, P3TI-O exhibits a more efficient exciton diffusion compared to P3TI-D, thus leading to longer exciton lifetimes in the copolymer with shorter alkyl side chains. Consequently, when blended with PC71BM in bulk heterojunctions, P3TI-O showed a better exciton dissociation efficiency compared to P3TI-D. These results correlate well with the higher short-circuit current densities observed in P3TI-O:PC71BM inverted architecture organic solar cells compared to the P3TI-D:PC71BM ones.
KW - alkyl side chain
KW - intermolecular interaction
KW - intramolecular
KW - charge-transfer
UR - http://www.scopus.com/inward/record.url?scp=85085163154&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.9b11072
DO - 10.1021/acs.jpcc.9b11072
M3 - Article
AN - SCOPUS:85085163154
SN - 1932-7447
VL - 124
SP - 9644
EP - 9655
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 18
ER -