TY - JOUR
T1 - Effect of geometric parameters on the stress distribution in Al 2024-T3 single-lap bolted joints
AU - Keikhosravy, Mehdi
AU - Oskouei, Reza
AU - Soltani, Payam
AU - Atas, Akin
AU - Soutis, Constantinos
PY - 2012
Y1 - 2012
N2 - Purpose - The purpose of this paper is to investigate the effect of geometric variables on the stress and strain distributions, as well as non-linear deformation behaviour of aluminium alloy 2024-T3 single-lap bolted joints loaded in tension. Design/methodology/approach - The study has been conducted by using numerical and experimental approaches. In the numerical part, 3D FE models were generated using ANSYS software for different e/d and W/d ratios in which e and W are variables but the hole diameter (d) is constant. Stress and displacement results for each case have been discussed to better explain the mode of failure. In the experimental part, e/d=3 and W/d=6 ratios were selected as constant and testing specimens were produced accordingly. The aim was to obtain baseline experimental load-strain and load-displacement values for selected specimen geometry coordinated with the numerical analyses. Findings - The good agreement between the experimental and numerical analysis provided confidence in the numerical methodology used to evaluate the different geometric variables. The results showed that the single-lap bolted plates with optimised W/d and e/d ratios could shift the failure mode from net-tension and shear-out to bearing failure by directing the maximum damaging stresses from the stress concentration region and shear-out planes towards the bearing region, leading to higher failure loads. Originality/value - The paper develops a FE model of single-lap bolted joints with a non-linear material model and investigates 3D stress analysis as well as non-linear deformation behaviour of bolted plates; optimisation of plates' width (W) and edge distance (e) to control failure modes; and bigger W/d and e/d ratios shift net-tension and shear-out to bearing failure mode.
AB - Purpose - The purpose of this paper is to investigate the effect of geometric variables on the stress and strain distributions, as well as non-linear deformation behaviour of aluminium alloy 2024-T3 single-lap bolted joints loaded in tension. Design/methodology/approach - The study has been conducted by using numerical and experimental approaches. In the numerical part, 3D FE models were generated using ANSYS software for different e/d and W/d ratios in which e and W are variables but the hole diameter (d) is constant. Stress and displacement results for each case have been discussed to better explain the mode of failure. In the experimental part, e/d=3 and W/d=6 ratios were selected as constant and testing specimens were produced accordingly. The aim was to obtain baseline experimental load-strain and load-displacement values for selected specimen geometry coordinated with the numerical analyses. Findings - The good agreement between the experimental and numerical analysis provided confidence in the numerical methodology used to evaluate the different geometric variables. The results showed that the single-lap bolted plates with optimised W/d and e/d ratios could shift the failure mode from net-tension and shear-out to bearing failure by directing the maximum damaging stresses from the stress concentration region and shear-out planes towards the bearing region, leading to higher failure loads. Originality/value - The paper develops a FE model of single-lap bolted joints with a non-linear material model and investigates 3D stress analysis as well as non-linear deformation behaviour of bolted plates; optimisation of plates' width (W) and edge distance (e) to control failure modes; and bigger W/d and e/d ratios shift net-tension and shear-out to bearing failure mode.
KW - Alloys
KW - Aluminium alloys
KW - Deformation
KW - Failure modes
KW - Finite element modelling
KW - Geometric parameters
KW - Single-lap joints
KW - Stress (materials)
KW - Stress analysis
UR - http://www.scopus.com/inward/record.url?scp=84857845472&partnerID=8YFLogxK
U2 - 10.1108/17579861211210018
DO - 10.1108/17579861211210018
M3 - Article
SN - 1757-9864
VL - 3
SP - 79
EP - 93
JO - International Journal of Structural Integrity
JF - International Journal of Structural Integrity
IS - 1
ER -