TY - JOUR
T1 - Effect of zirconia addition on laser powder bed fusion of Inconel 718-zirconia composite
AU - Jiang, Cho Pei
AU - Maidhah, Andi Ard
AU - Wibisono, Alvian Toto
AU - Toyserkani, Ehsan
AU - Macek, Wojciech
AU - Ramezani, Maziar
PY - 2025/3/4
Y1 - 2025/3/4
N2 - This study investigates the integration of zirconia (ZrO2) as a reinforcing agent in the Inconel 718 (IN718) matrix to potentially enhance material hardness and high-temperature oxidation resistance. Employing laser powder bed fusion (LPBF), 3D composite parts of IN718-ZrO2 were systematically fabricated, varying the ZrO2 mass. The primary objectives encompass exploring the impact of ZrO2 on the microstructure, micro-hardness, and high-temperature oxidation of the IN718- ZrO2 composite. The research employed comprehensive testing methodologies, including scanning electron microscopy (SEM), micro-Vickers hardness, XRD, thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Results elucidated the successful 3D printing of IN718-ZrO2 composites utilizing the LPBF. Notably, defects such as porosity, cracks, lack of fusion, and balling were identified, intensifying with increased ZrO2 content. The composite demonstrated a substantial increase in hardness across all ZrO2 mass variations compared to pure IN718, with 1 wt.% ZrO2 achieving the highest hardness. Furthermore, oxidation resistance exhibited improvement with higher ZrO2 content in the composite. The comprehensive analysis unveils promising opportunities for developing and applying IN718-ZrO2 composites in industries characterized by high-temperature environments and elevated wear conditions. The findings provide valuable insights into optimizing the performance of these composites, thereby contributing to advancements in materials engineering for challenging operational conditions.
AB - This study investigates the integration of zirconia (ZrO2) as a reinforcing agent in the Inconel 718 (IN718) matrix to potentially enhance material hardness and high-temperature oxidation resistance. Employing laser powder bed fusion (LPBF), 3D composite parts of IN718-ZrO2 were systematically fabricated, varying the ZrO2 mass. The primary objectives encompass exploring the impact of ZrO2 on the microstructure, micro-hardness, and high-temperature oxidation of the IN718- ZrO2 composite. The research employed comprehensive testing methodologies, including scanning electron microscopy (SEM), micro-Vickers hardness, XRD, thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Results elucidated the successful 3D printing of IN718-ZrO2 composites utilizing the LPBF. Notably, defects such as porosity, cracks, lack of fusion, and balling were identified, intensifying with increased ZrO2 content. The composite demonstrated a substantial increase in hardness across all ZrO2 mass variations compared to pure IN718, with 1 wt.% ZrO2 achieving the highest hardness. Furthermore, oxidation resistance exhibited improvement with higher ZrO2 content in the composite. The comprehensive analysis unveils promising opportunities for developing and applying IN718-ZrO2 composites in industries characterized by high-temperature environments and elevated wear conditions. The findings provide valuable insights into optimizing the performance of these composites, thereby contributing to advancements in materials engineering for challenging operational conditions.
KW - Additive manufacturing
KW - Inconel 718
KW - Laser powder bed fusion
KW - Zirconia
UR - http://www.scopus.com/inward/record.url?scp=86000328944&partnerID=8YFLogxK
U2 - 10.1007/s40964-025-01044-1
DO - 10.1007/s40964-025-01044-1
M3 - Article
AN - SCOPUS:86000328944
SN - 2363-9512
JO - Progress in Additive Manufacturing
JF - Progress in Additive Manufacturing
ER -