Effects of Lactate on One Class of Group III (CT3) Muscle Afferents

Rochelle A. Peterson, Christine König, Katharina Zimmermann, Christine M. Barry, Lukasz Wiklendt, Simon J.H. Brookes

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
4 Downloads (Pure)


A class of Group III muscle afferent neurons has branching sensory terminals in the connective tissue between layers of mouse abdominal muscles (“CT3 muscle afferents”). These sensory endings are both mechanosensitive and metabosensitive. In the present study, responses of CT3 afferents to lactate ions and changes in temperature were recorded. Raising muscle temperature from 32.7°C to 37°C had no consistent effects on CT3 afferent basal firing rate or responses to either von Frey hair stimulation or to an applied load. Superfusion with lactate ions (15 mM, pH 7.4) was associated with an increase in firing from 6 ± 0.7 Hz to 11.7 ± 6.7 Hz (14 units, n = 13, P < 0.05, P = 0.0484) but with considerable variability in the nature and latency of response. Reducing the concentration of extracellular divalent cations, which mimicked the chelating effects of lactate, did not increase firing. Raised concentrations of divalent cations (to compensate for chelation) did not block excitatory effects of lactate on CT3 afferents, suggesting that effects via ASIC3 were not involved. Messenger RNA for the G-protein coupled receptor, hydroxyl carboxylic acid receptor 1 (HCAR1) was detected in dorsal root ganglia and HCAR1-like immunoreactivity was present in spinal afferent nerve cell bodies retrogradely labeled from mouse abdominal muscles. HCAR1-like immunoreactivity was also present in axons in mouse abdominal muscles. This raises the possibility that some effects of lactate on group III muscle afferents may be mediated by HCAR1.

Original languageEnglish
Article number215
Number of pages16
JournalFrontiers in Cellular Neuroscience
Publication statusPublished - 6 Aug 2020

Bibliographical note

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms


  • ergoreceptor
  • HCAR1
  • lactate
  • lactic acid
  • metaboreceptor


Dive into the research topics of 'Effects of Lactate on One Class of Group III (CT3) Muscle Afferents'. Together they form a unique fingerprint.

Cite this