TY - JOUR
T1 - Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2-b] thiophene-quinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance
AU - Xu, Xiaofeng
AU - Li, Zhaojun
AU - Bini, Kim
AU - Backe, Olof
AU - James, David
AU - Olsson, Eva
AU - Andersson, Mats R.
AU - Wang, Ergang
PY - 2014/11/28
Y1 - 2014/11/28
N2 - Four new D-A polymers PIDTT-Q-p, PIDTT-Q-m, PIDTT-QF-p and PIDTT-QF-m, using indacenodithieno[3,2-b]thiophene (IDTT) as an electron-rich unit and quinoxaline (Q) as an electron-deficient unit, were synthesized via a Pd-catalyzed Stille polymerization. The side chains on the pendant phenyl rings of IDTT were varied from the para- to the meta-position, and the effect of the inclusion of fluorine on the quinoxaline unit was simultaneously investigated. The influence on the optical and electrochemical properties, film topography and photovoltaic properties of the four copolymers were thoroughly examined via a range of techniques. The inductively electron-withdrawing properties of the fluorine atoms result in a decrease of the highest occupied molecular orbital (HOMO) energy levels. The effect of meta-substitution on the PIDTT-Q-m polymer leads to good solubility and in turn higher molecular weight. More importantly, it exhibits optimal morphological properties in the PIDTT-Q-m/PC71BM blends. As a result, the corresponding solar cells (ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al) attain the best power conversion efficiency (PCE) of 6.8%. The structure-property correlations demonstrate that the meta-alkyl-phenyl substituted IDTT unit is a promising building block for efficient organic photovoltaic materials. This result also extends our strategy with regards to side chain isomerism of IDTT-based copolymers for enhanced photovoltaic performance.
AB - Four new D-A polymers PIDTT-Q-p, PIDTT-Q-m, PIDTT-QF-p and PIDTT-QF-m, using indacenodithieno[3,2-b]thiophene (IDTT) as an electron-rich unit and quinoxaline (Q) as an electron-deficient unit, were synthesized via a Pd-catalyzed Stille polymerization. The side chains on the pendant phenyl rings of IDTT were varied from the para- to the meta-position, and the effect of the inclusion of fluorine on the quinoxaline unit was simultaneously investigated. The influence on the optical and electrochemical properties, film topography and photovoltaic properties of the four copolymers were thoroughly examined via a range of techniques. The inductively electron-withdrawing properties of the fluorine atoms result in a decrease of the highest occupied molecular orbital (HOMO) energy levels. The effect of meta-substitution on the PIDTT-Q-m polymer leads to good solubility and in turn higher molecular weight. More importantly, it exhibits optimal morphological properties in the PIDTT-Q-m/PC71BM blends. As a result, the corresponding solar cells (ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al) attain the best power conversion efficiency (PCE) of 6.8%. The structure-property correlations demonstrate that the meta-alkyl-phenyl substituted IDTT unit is a promising building block for efficient organic photovoltaic materials. This result also extends our strategy with regards to side chain isomerism of IDTT-based copolymers for enhanced photovoltaic performance.
UR - http://www.scopus.com/inward/record.url?scp=84908135472&partnerID=8YFLogxK
U2 - 10.1039/c4ta04102j
DO - 10.1039/c4ta04102j
M3 - Article
SN - 2050-7488
VL - 2
SP - 18988
EP - 18997
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 44
ER -